jf_plonk/circuit/plonk_verifier/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.

// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.

//! Circuits for Plonk verifiers.
use crate::proof_system::{structs::VerifyingKey, verifier::Verifier};
use ark_ec::{
    pairing::Pairing,
    short_weierstrass::{Affine, SWCurveConfig as SWParam},
    twisted_edwards::TECurveConfig as TEParam,
};
use ark_ff::{BigInteger, PrimeField};
use ark_std::{format, string::ToString, vec, vec::Vec};
use jf_relation::{
    gadgets::{
        ecc::{MultiScalarMultiplicationCircuit, PointVariable, SWToTEConParam, TEPoint},
        ultraplonk::mod_arith::{FpElem, FpElemVar},
    },
    Circuit, CircuitError,
    CircuitError::ParameterError,
    PlonkCircuit, Variable,
};
use jf_rescue::RescueParameter;

mod gadgets;
mod poly;
mod structs;

use gadgets::*;
pub use structs::*;

#[derive(Debug, Clone, Eq, PartialEq)]
/// Represent variable of a Plonk verifying key.
pub struct VerifyingKeyVar<E: Pairing> {
    /// The variables for the permutation polynomial commitments.
    pub(crate) sigma_comms: Vec<PointVariable>,
    /// The variables for the selector polynomial commitments.
    pub(crate) selector_comms: Vec<PointVariable>,
    /// A flag indicating whether the key is a merged key.
    is_merged: bool,

    /// The size of the evaluation domain. Should be a power of two.
    domain_size: usize,

    /// The number of public inputs.
    num_inputs: usize,

    /// The constants K0, ..., K_num_wire_types that ensure wire subsets are
    /// disjoint.
    k: Vec<E::ScalarField>,
}

impl<E: Pairing> VerifyingKeyVar<E> {
    /// Create a variable for a Plonk verifying key.
    pub fn new<F, P>(
        circuit: &mut PlonkCircuit<F>,
        verify_key: &VerifyingKey<E>,
    ) -> Result<Self, CircuitError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: PrimeField + SWToTEConParam,
        P: SWParam<BaseField = F>,
    {
        let sigma_comms = verify_key
            .sigma_comms
            .iter()
            .map(|comm| circuit.create_point_variable(TEPoint::from(comm.0)))
            .collect::<Result<Vec<_>, CircuitError>>()?;
        let selector_comms = verify_key
            .selector_comms
            .iter()
            .map(|comm| circuit.create_point_variable(TEPoint::from(comm.0)))
            .collect::<Result<Vec<_>, CircuitError>>()?;
        Ok(Self {
            sigma_comms,
            selector_comms,
            is_merged: verify_key.is_merged,
            domain_size: verify_key.domain_size,
            num_inputs: verify_key.num_inputs,
            k: verify_key.k.clone(),
        })
    }

    /// Convert to a list of variables.
    pub fn to_vec(&self) -> Vec<Variable> {
        let mut res = vec![];
        for sigma_comm in self.sigma_comms.iter() {
            res.push(sigma_comm.get_x());
            res.push(sigma_comm.get_y());
        }
        for selector_comm in self.selector_comms.iter() {
            res.push(selector_comm.get_x());
            res.push(selector_comm.get_y());
        }
        res
    }

    /// Merge with another Plonk verifying key variable.
    pub(crate) fn merge<F, P>(
        &self,
        circuit: &mut PlonkCircuit<F>,
        other: &Self,
    ) -> Result<Self, CircuitError>
    where
        F: PrimeField,
        P: TEParam<BaseField = F>,
    {
        if self.is_merged || other.is_merged {
            return Err(ParameterError(
                "cannot merge a merged key again".to_string(),
            ));
        }
        if self.domain_size != other.domain_size {
            return Err(ParameterError(
                "cannot merge a verifying key with different domain size".to_string(),
            ));
        }
        if self.num_inputs != other.num_inputs {
            return Err(ParameterError(
                "cannot merge a verifying key with different public input length".to_string(),
            ));
        }
        let sigma_comms = self
            .sigma_comms
            .iter()
            .zip(other.sigma_comms.iter())
            .map(|(com1, com2)| circuit.ecc_add::<P>(com1, com2))
            .collect::<Result<Vec<_>, CircuitError>>()?;
        let selector_comms = self
            .selector_comms
            .iter()
            .zip(other.selector_comms.iter())
            .map(|(com1, com2)| circuit.ecc_add::<P>(com1, com2))
            .collect::<Result<Vec<_>, CircuitError>>()?;
        Ok(Self {
            sigma_comms,
            selector_comms,
            is_merged: true,
            domain_size: self.domain_size,
            num_inputs: self.num_inputs + other.num_inputs,
            k: self.k.clone(),
        })
    }

    /// Circuit for partially verifying a batched proof without performing the
    /// pairing. Return the variables for the two group elements used in the
    /// final pairing.
    /// The public inputs are already in the form of FpElemVars.
    pub fn partial_verify_circuit<F, P>(
        circuit: &mut PlonkCircuit<F>,
        beta_g: &TEPoint<F>,
        generator_g: &TEPoint<F>,
        merged_vks: &[Self],
        shared_public_input_vars: &[FpElemVar<F>],
        batch_proof: &BatchProofVar<F>,
        blinding_factor: Variable,
    ) -> Result<(PointVariable, PointVariable), CircuitError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: RescueParameter + SWToTEConParam,
        P: SWParam<BaseField = F> + TEParam,
    {
        if merged_vks.is_empty() {
            return Err(ParameterError("empty merged verification keys".to_string()));
        }
        if merged_vks.len() != batch_proof.len() {
            return Err(ParameterError(format!(
                "the number of verification keys {} is different from the number of instances {}.",
                merged_vks.len(),
                batch_proof.len()
            )));
        }

        let domain_size = merged_vks[0].domain_size;
        for (i, vk) in merged_vks.iter().skip(1).enumerate() {
            if vk.domain_size != domain_size {
                return Err(ParameterError(format!(
                    "the {}-th verification key's domain size {} is different from {}.",
                    i, vk.domain_size, domain_size
                )));
            }
        }

        let range_bit_len = circuit.range_bit_len()?;
        let m2 = (<E::ScalarField as PrimeField>::MODULUS_BIT_SIZE as usize + 1) >> 1;
        // m should be a multiple of `range_bit_len`
        let m = (m2 - 1) / range_bit_len * range_bit_len + range_bit_len;

        // constants
        let two_power_m = Some(E::BaseField::from(2u8).pow([m as u64]));

        let fr_modulus_bits = <E::ScalarField as PrimeField>::MODULUS.to_bytes_le();
        let modulus_in_f = F::from_le_bytes_mod_order(&fr_modulus_bits);
        let modulus_fp_elem = FpElem::new(&modulus_in_f, m, two_power_m)?;

        let non_native_field_info = NonNativeFieldInfo::<F> {
            m,
            two_power_m,
            modulus_in_f,
            modulus_fp_elem,
        };

        let verifier = Verifier::<E>::new(domain_size)?;
        let domain = verifier.domain;

        // we need to copy the public input once after merging the circuit
        let shared_public_input_vars =
            [shared_public_input_vars, shared_public_input_vars].concat();
        let public_inputs = vec![&shared_public_input_vars[..]; merged_vks.len()];
        let merged_vks_ref: Vec<&VerifyingKeyVar<E>> = merged_vks.iter().collect();

        // generate the PCS info
        let pcs_info_var = prepare_pcs_info_var(
            circuit,
            &merged_vks_ref,
            &public_inputs,
            batch_proof,
            &None,
            domain,
            non_native_field_info,
        )?;

        // inner1
        //  = [open_proof]
        //  + u * [shifted_open_proof]
        //  + blinding_factor * [1]1
        let generator_g_var = circuit.create_constant_point_variable(*generator_g)?;
        let bases = [
            pcs_info_var.opening_proof,
            pcs_info_var.shifted_opening_proof,
            generator_g_var,
        ];
        let u_var = pcs_info_var.u.convert_to_var(circuit)?;
        let scalars = [circuit.one(), u_var, blinding_factor];

        let inner1 = MultiScalarMultiplicationCircuit::<_, P>::msm(circuit, &bases, &scalars)?;

        // inner2
        //  = eval_point * [open_proof]
        //  + next_eval_point * u * [shifted_open_proof]
        //  + [aggregated_comm]
        //  - aggregated_eval * [1]1
        //  + blinding_factor * [beta]1
        let mut scalars_and_bases = pcs_info_var.comm_scalars_and_bases;
        scalars_and_bases.scalars.push(pcs_info_var.eval_point);
        scalars_and_bases.bases.push(pcs_info_var.opening_proof);

        let tmp = circuit.mod_mul(
            &pcs_info_var.next_eval_point,
            &pcs_info_var.u,
            &modulus_fp_elem,
        )?;
        scalars_and_bases.scalars.push(tmp);
        scalars_and_bases
            .bases
            .push(pcs_info_var.shifted_opening_proof);

        let generator_g_inv_var = circuit.create_constant_point_variable(generator_g.inverse())?;
        scalars_and_bases.scalars.push(pcs_info_var.eval);
        scalars_and_bases.bases.push(generator_g_inv_var);

        let mut scalars = scalars_and_bases
            .scalars
            .iter()
            .map(|x| x.convert_to_var(circuit))
            .collect::<Result<Vec<_>, _>>()?;
        scalars.push(blinding_factor);

        let mut bases = scalars_and_bases.bases;
        let beta_g = circuit.create_constant_point_variable(*beta_g)?;
        bases.push(beta_g);
        let inner2 = MultiScalarMultiplicationCircuit::<_, P>::msm(circuit, &bases, &scalars)?;

        Ok((inner1, inner2))
    }
}

/// Plonk Circuit that support batch verification
pub trait BatchableCircuit<F> {
    /// Aggregate verification keys
    fn aggregate_verify_keys<E, P>(
        &mut self,
        vk_type_a_vars: &[VerifyingKeyVar<E>],
        vk_type_b_vars: &[VerifyingKeyVar<E>],
    ) -> Result<Vec<VerifyingKeyVar<E>>, CircuitError>
    where
        E: Pairing,
        P: TEParam<BaseField = F>;
}

/// Instances batching scheme related gates
impl<F> BatchableCircuit<F> for PlonkCircuit<F>
where
    F: PrimeField,
{
    fn aggregate_verify_keys<E, P>(
        &mut self,
        vk_type_a_vars: &[VerifyingKeyVar<E>],
        vk_type_b_vars: &[VerifyingKeyVar<E>],
    ) -> Result<Vec<VerifyingKeyVar<E>>, CircuitError>
    where
        E: Pairing,
        P: TEParam<BaseField = F>,
    {
        if vk_type_a_vars.len() != vk_type_b_vars.len() {
            return Err(ParameterError(format!(
                "the number of type A verification key variables {} is different from the number of type B verification key variables {}.",
                vk_type_a_vars.len(),
                vk_type_b_vars.len())
            ));
        }
        vk_type_a_vars
            .iter()
            .zip(vk_type_b_vars.iter())
            .map(|(vk_b, vk_d)| vk_b.merge::<F, P>(self, vk_d))
            .collect::<Result<Vec<_>, CircuitError>>()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::{
        proof_system::{
            batch_arg::{new_mergeable_circuit_for_test, BatchArgument},
            structs::BatchProof,
            PlonkKzgSnark, UniversalSNARK,
        },
        transcript::{PlonkTranscript, RescueTranscript},
    };
    use ark_bls12_377::{g1::Config as Param377, Bls12_377, Fq as Fq377};
    use ark_ec::{short_weierstrass::SWCurveConfig, twisted_edwards::TECurveConfig, CurveGroup};
    use ark_std::{vec, UniformRand};
    use jf_relation::{
        gadgets::test_utils::test_variable_independence_for_circuit, MergeableCircuitType,
    };
    use jf_utils::{field_switching, test_rng};

    const RANGE_BIT_LEN_FOR_TEST: usize = 16;

    #[test]
    fn test_aggregate_vks() -> Result<(), CircuitError> {
        test_aggregate_vks_helper::<Bls12_377, Fq377, _, Param377>()
    }

    fn test_aggregate_vks_helper<E, F, P, Q>() -> Result<(), CircuitError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: PrimeField + RescueParameter + SWToTEConParam,
        P: SWParam<BaseField = F>,
        Q: TEParam<BaseField = F>,
    {
        // Simulate universal setup
        let rng = &mut test_rng();
        let n = 32;
        let max_degree = n + 2;
        let srs = PlonkKzgSnark::<E>::universal_setup_for_testing(max_degree, rng)?;

        // Setup instances and create verifying keys
        let mut vks_type_a = vec![];
        let mut vks_type_b = vec![];
        let shared_public_input = E::ScalarField::rand(rng);
        for i in 0..5 {
            let circuit = new_mergeable_circuit_for_test::<E>(
                shared_public_input,
                i,
                MergeableCircuitType::TypeA,
            )?;
            let instance =
                BatchArgument::setup_instance(&srs, circuit, MergeableCircuitType::TypeA)?;
            vks_type_a.push(instance.verify_key_ref().clone());

            let circuit = new_mergeable_circuit_for_test::<E>(
                shared_public_input,
                i,
                MergeableCircuitType::TypeB,
            )?;
            let instance =
                BatchArgument::setup_instance(&srs, circuit, MergeableCircuitType::TypeB)?;
            vks_type_b.push(instance.verify_key_ref().clone());
        }
        // Compute merged verifying keys
        let vks_type_a_ref: Vec<&VerifyingKey<E>> = vks_type_a.iter().collect();
        let vks_type_b_ref: Vec<&VerifyingKey<E>> = vks_type_b.iter().collect();
        let merged_vks = BatchArgument::aggregate_verify_keys(&vks_type_a_ref, &vks_type_b_ref)?;

        // Check circuits
        let mut circuit: PlonkCircuit<F> = PlonkCircuit::new_ultra_plonk(RANGE_BIT_LEN_FOR_TEST);
        let vk_type_a_vars = vks_type_a
            .iter()
            .map(|vk| VerifyingKeyVar::new(&mut circuit, vk))
            .collect::<Result<Vec<_>, CircuitError>>()?;
        for (vk_var, vk) in vk_type_a_vars.iter().zip(vks_type_a.iter()) {
            check_vk_equality(&circuit, vk_var, vk);
        }

        let vk_type_b_vars = vks_type_b
            .iter()
            .map(|vk| VerifyingKeyVar::new(&mut circuit, vk))
            .collect::<Result<Vec<_>, CircuitError>>()?;
        for (vk_var, vk) in vk_type_b_vars.iter().zip(vks_type_b.iter()) {
            check_vk_equality(&circuit, vk_var, vk);
        }

        let merged_vk_vars =
            circuit.aggregate_verify_keys::<E, Q>(&vk_type_a_vars, &vk_type_b_vars)?;
        for (vk_var, vk) in merged_vk_vars.iter().zip(merged_vks.iter()) {
            check_vk_equality(&circuit, vk_var, vk);
        }

        assert!(circuit.check_circuit_satisfiability(&[]).is_ok());

        // Error paths
        // wrong witness
        let tmp = circuit.witness(merged_vk_vars[0].sigma_comms[0].get_x())?;
        *circuit.witness_mut(merged_vk_vars[0].sigma_comms[0].get_x()) = F::from(0u8);
        assert!(circuit.check_circuit_satisfiability(&[]).is_err());
        *circuit.witness_mut(merged_vk_vars[0].sigma_comms[0].get_x()) = tmp;

        // inconsistent length between `vk_type_a_vars` and `vk_type_b_vars`
        assert!(circuit
            .aggregate_verify_keys::<E, Q>(&vk_type_a_vars[1..], &vk_type_b_vars)
            .is_err());

        // merged keys can't be merged again.
        let mut bad_vk_vars = vk_type_a_vars.clone();
        bad_vk_vars[0].is_merged = true;
        assert!(circuit
            .aggregate_verify_keys::<E, Q>(&bad_vk_vars, &vk_type_b_vars)
            .is_err());

        Ok(())
    }

    fn check_vk_equality<E, F, P>(
        circuit: &PlonkCircuit<F>,
        vk_var: &VerifyingKeyVar<E>,
        vk: &VerifyingKey<E>,
    ) where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: PrimeField + SWToTEConParam,
        P: SWParam<BaseField = F>,
    {
        for (comm_var, comm) in vk_var.sigma_comms.iter().zip(vk.sigma_comms.iter()) {
            let expected_comm = TEPoint::from(comm.0);
            assert_eq!(circuit.point_witness(comm_var).unwrap(), expected_comm);
        }
        for (comm_var, comm) in vk_var.selector_comms.iter().zip(vk.selector_comms.iter()) {
            let expected_comm = TEPoint::from(comm.0);
            assert_eq!(circuit.point_witness(comm_var).unwrap(), expected_comm);
        }
        assert_eq!(vk_var.is_merged, vk.is_merged);
    }

    #[test]
    fn test_partial_verification_circuit() -> Result<(), CircuitError> {
        test_partial_verification_circuit_helper::<Bls12_377, _, _, RescueTranscript<_>>()
    }

    fn test_partial_verification_circuit_helper<E, F, P, T>() -> Result<(), CircuitError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: RescueParameter + SWToTEConParam,
        P: SWCurveConfig<BaseField = F> + TECurveConfig,
        T: PlonkTranscript<F>,
    {
        let rng = &mut test_rng();

        for log_circuit_size in 8..12 {
            // =======================================
            // setup
            // =======================================

            // 1. Simulate universal setup
            let n = 1 << log_circuit_size;
            let max_degree = n + 2;
            let srs = PlonkKzgSnark::<E>::universal_setup_for_testing(max_degree, rng)?;

            // 2. Setup instances
            let shared_public_input = E::ScalarField::rand(rng);
            let mut instances_type_a = vec![];
            let mut instances_type_b = vec![];
            for i in 32..50 {
                let circuit = new_mergeable_circuit_for_test::<E>(
                    shared_public_input,
                    i,
                    MergeableCircuitType::TypeA,
                )?;
                let instance =
                    BatchArgument::setup_instance(&srs, circuit, MergeableCircuitType::TypeA)?;
                instances_type_a.push(instance);

                let circuit = new_mergeable_circuit_for_test::<E>(
                    shared_public_input,
                    i,
                    MergeableCircuitType::TypeB,
                )?;
                let instance =
                    BatchArgument::setup_instance(&srs, circuit, MergeableCircuitType::TypeB)?;
                instances_type_b.push(instance);
            }
            // 3. Batch Proving
            let batch_proof =
                BatchArgument::batch_prove::<_, T>(rng, &instances_type_a, &instances_type_b)?;

            // 4. Aggregate verification keys
            let vks_type_a: Vec<&VerifyingKey<E>> = instances_type_a
                .iter()
                .map(|pred| pred.verify_key_ref())
                .collect();
            let vks_type_b: Vec<&VerifyingKey<E>> = instances_type_b
                .iter()
                .map(|pred| pred.verify_key_ref())
                .collect();
            let merged_vks = BatchArgument::aggregate_verify_keys(&vks_type_a, &vks_type_b)?;
            // error path: inconsistent length between vks_type_a and vks_type_b
            assert!(BatchArgument::aggregate_verify_keys(&vks_type_a[1..], &vks_type_b).is_err());

            // 5. Verification
            let open_key_ref = &vks_type_a[0].open_key;
            let beta_g_ref = &srs.powers_of_g[1];
            let blinding_factor = E::ScalarField::rand(rng);
            let (inner1, inner2) = BatchArgument::partial_verify::<T>(
                beta_g_ref,
                &open_key_ref.g,
                &merged_vks,
                &[shared_public_input],
                &batch_proof,
                blinding_factor,
            )?;
            assert!(BatchArgument::decide(open_key_ref, inner1, inner2)?);

            {
                // =======================================
                // good path
                // =======================================
                let public_inputs = [[field_switching(&shared_public_input)].as_ref()].concat();

                let (mut circuit, partial_verify_points) = build_circuit::<E, F, P>(
                    &shared_public_input,
                    &merged_vks,
                    &batch_proof,
                    beta_g_ref,
                    &open_key_ref.g,
                    &blinding_factor,
                )?;

                assert!(
                    circuit.check_circuit_satisfiability(&public_inputs).is_ok(),
                    "{:?}",
                    circuit.check_circuit_satisfiability(&public_inputs)
                );
                assert_eq!(
                    circuit.point_witness(&partial_verify_points.0)?,
                    TEPoint::<F>::from(inner1.into_affine())
                );
                assert_eq!(
                    circuit.point_witness(&partial_verify_points.1)?,
                    TEPoint::<F>::from(inner2.into_affine())
                );

                // ark_std::println!("#variables: {}", circuit.num_vars());
                // ark_std::println!("#constraints: {}\n", circuit.num_gates());

                // =======================================
                // bad path: wrong pub inputs
                // =======================================
                // instance inputs = partial verify inputs != satisfiability inputs
                let wrong_public_inputs = [[F::rand(rng)].as_ref()].concat();
                assert!(circuit
                    .check_circuit_satisfiability(&wrong_public_inputs)
                    .is_err(),);

                // =======================================
                // bad path: wrong number of pub inputs
                // =======================================
                let wrong_public_inputs =
                    [[field_switching(&shared_public_input); 3].as_ref()].concat();
                assert!(circuit
                    .check_circuit_satisfiability(&wrong_public_inputs)
                    .is_err(),);

                // =======================================
                // bad path: wrong witness
                // =======================================
                *circuit.witness_mut(10) = F::from(0u32);
                assert!(circuit
                    .check_circuit_satisfiability(&public_inputs)
                    .is_err());
            }
            // ==============================================
            // more bad path: wrong inputs length
            // ==============================================
            {
                // wrong vks length (less by 1)
                // should not be able to generate circuit
                let mut wrong_merge_vks = merged_vks.clone();
                let tmp = wrong_merge_vks.pop().unwrap();
                assert!(build_circuit::<E, F, P>(
                    &shared_public_input,
                    &wrong_merge_vks,
                    &batch_proof,
                    beta_g_ref,
                    &open_key_ref.g,
                    &blinding_factor,
                )
                .is_err());

                // wrong vks length (more by 1)
                // should not be able to generate circuit
                let mut wrong_merge_vks = merged_vks.clone();
                wrong_merge_vks.push(tmp);
                assert!(build_circuit::<E, F, P>(
                    &shared_public_input,
                    &wrong_merge_vks,
                    &batch_proof,
                    beta_g_ref,
                    &open_key_ref.g,
                    &blinding_factor,
                )
                .is_err());
            }

            // ==============================================
            // more bad path: wrong inputs to the function
            // ==============================================
            {
                // wrong shared input, the circuit is not satisfied
                // instance inputs = satisfiability inputs != partial verify inputs
                let public_inputs = [[field_switching(&shared_public_input)].as_ref()].concat();
                let wrong_shared_public_input = E::ScalarField::rand(rng);
                let (circuit, partial_verify_points) = build_circuit::<E, F, P>(
                    &wrong_shared_public_input,
                    &merged_vks,
                    &batch_proof,
                    beta_g_ref,
                    &open_key_ref.g,
                    &blinding_factor,
                )?;

                assert!(
                    circuit
                        .check_circuit_satisfiability(&public_inputs)
                        .is_err(),
                    "{:?}",
                    circuit.check_circuit_satisfiability(public_inputs.as_ref())
                );
                assert_ne!(
                    circuit.point_witness(&partial_verify_points.0)?,
                    TEPoint::<F>::from(inner1.into_affine())
                );
                assert_ne!(
                    circuit.point_witness(&partial_verify_points.1)?,
                    TEPoint::<F>::from(inner2.into_affine())
                );

                // wrong shared input and circuit input
                // instance inputs != partial verify inputs = satisfiability inputs
                // the circuit is satisfied because partial verify inputs = satisfiability
                // inputs both output must be different so it will not verify
                // original instance
                let wrong_public_inputs =
                    [[field_switching(&wrong_shared_public_input)].as_ref()].concat();
                assert!(
                    circuit
                        .check_circuit_satisfiability(&wrong_public_inputs)
                        .is_ok(),
                    "{:?}",
                    circuit.check_circuit_satisfiability(wrong_public_inputs.as_ref())
                );
                assert_ne!(
                    circuit.point_witness(&partial_verify_points.0)?,
                    TEPoint::<F>::from(inner1.into_affine())
                );
                assert_ne!(
                    circuit.point_witness(&partial_verify_points.1)?,
                    TEPoint::<F>::from(inner2.into_affine())
                );
            }
        }

        Ok(())
    }

    fn build_circuit<E, F, P>(
        shared_public_input: &E::ScalarField,
        merged_vks: &[VerifyingKey<E>],
        batch_proof: &BatchProof<E>,
        beta_g_ref: &Affine<P>,
        generator_g: &Affine<P>,
        blinding_factor: &E::ScalarField,
    ) -> Result<(PlonkCircuit<F>, (PointVariable, PointVariable)), CircuitError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: RescueParameter + SWToTEConParam,
        P: SWCurveConfig<BaseField = F> + TECurveConfig,
    {
        let mut circuit = PlonkCircuit::<E::BaseField>::new_ultra_plonk(RANGE_BIT_LEN_FOR_TEST);

        // constants
        let m = 128;
        let two_power_m = Some(E::BaseField::from(2u8).pow([m as u64]));

        // public inputs
        let shared_public_input_var =
            circuit.create_public_variable(field_switching(shared_public_input))?;
        let shared_public_input_fp_elem_var =
            FpElemVar::new_unchecked(&mut circuit, shared_public_input_var, m, two_power_m)?;

        // vk
        let vk_vars = merged_vks
            .iter()
            .map(|x| VerifyingKeyVar::new(&mut circuit, x))
            .collect::<Result<Vec<_>, _>>()?;

        // proof
        let batch_proof_vars = (*batch_proof).create_variables(&mut circuit, m, two_power_m)?;

        let beta_g: TEPoint<F> = (*beta_g_ref).into();
        let generator_g = &(*generator_g).into();
        let blinding_factor_var = circuit.create_variable(field_switching(blinding_factor))?;

        let partial_verify_points = VerifyingKeyVar::partial_verify_circuit(
            &mut circuit,
            &beta_g,
            generator_g,
            &vk_vars,
            &[shared_public_input_fp_elem_var],
            &batch_proof_vars,
            blinding_factor_var,
        )?;

        Ok((circuit, partial_verify_points))
    }

    #[test]
    fn test_variable_independence_for_partial_verification_circuit() -> Result<(), CircuitError> {
        test_variable_independence_for_partial_verification_circuit_helper::<
            Bls12_377,
            _,
            _,
            RescueTranscript<_>,
        >()
    }

    fn test_variable_independence_for_partial_verification_circuit_helper<E, F, P, T>(
    ) -> Result<(), CircuitError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        F: RescueParameter + SWToTEConParam,
        P: SWCurveConfig<BaseField = F> + TECurveConfig,
        T: PlonkTranscript<F>,
    {
        let rng = &mut test_rng();
        let i = 8;
        let mut circuits = vec![];

        // 1. Simulate universal setup
        let n = 1 << i;
        let max_degree = n + 2;
        let srs = PlonkKzgSnark::<E>::universal_setup_for_testing(max_degree, rng)?;

        for _ in 0..2 {
            // =======================================
            // set up
            // =======================================

            // 2. Setup instances
            let shared_public_input = E::ScalarField::rand(rng);
            let mut instances_type_a = vec![];
            let mut instances_type_b = vec![];

            let circuit = new_mergeable_circuit_for_test::<E>(
                shared_public_input,
                i,
                MergeableCircuitType::TypeA,
            )?;
            let instance =
                BatchArgument::setup_instance(&srs, circuit, MergeableCircuitType::TypeA)?;
            instances_type_a.push(instance);

            let circuit = new_mergeable_circuit_for_test::<E>(
                shared_public_input,
                i,
                MergeableCircuitType::TypeB,
            )?;
            let instance =
                BatchArgument::setup_instance(&srs, circuit, MergeableCircuitType::TypeB)?;
            instances_type_b.push(instance);

            // 3. Batch Proving
            let batch_proof =
                BatchArgument::batch_prove::<_, T>(rng, &instances_type_a, &instances_type_b)?;

            // 4. Aggregate verification keys
            let vks_type_a: Vec<&VerifyingKey<E>> = instances_type_a
                .iter()
                .map(|pred| pred.verify_key_ref())
                .collect();
            let vks_type_b: Vec<&VerifyingKey<E>> = instances_type_b
                .iter()
                .map(|pred| pred.verify_key_ref())
                .collect();
            let merged_vks = BatchArgument::aggregate_verify_keys(&vks_type_a, &vks_type_b)?;

            // 5. Build circuit
            let open_key_ref = &vks_type_a[0].open_key;
            let beta_g_ref = &srs.powers_of_g[1];
            let blinding_factor = E::ScalarField::rand(rng);

            let (mut circuit, _partial_verify_points) = build_circuit::<E, F, P>(
                &shared_public_input,
                &merged_vks,
                &batch_proof,
                beta_g_ref,
                &open_key_ref.g,
                &blinding_factor,
            )?;

            circuit.finalize_for_arithmetization()?;
            circuits.push(circuit);
        }

        test_variable_independence_for_circuit(circuits[0].clone(), circuits[1].clone())?;

        Ok(())
    }
}