jf_plonk/transcript/
solidity.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.

// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.

//! This module implements solidity transcript.
use super::PlonkTranscript;
use crate::{
    constants::KECCAK256_STATE_SIZE, errors::PlonkError, proof_system::structs::VerifyingKey,
};
use ark_ec::{
    pairing::Pairing,
    short_weierstrass::{Affine, SWCurveConfig},
    AffineRepr,
};
use ark_ff::{BigInteger, PrimeField};
use ark_std::vec::Vec;
use jf_pcs::prelude::Commitment;
use jf_utils::to_bytes;
use sha3::{Digest, Keccak256};

/// Transcript with `keccak256` hash function.
///
/// We append new elements to the transcript vector,
/// and when a challenge is generated, the state is updated and transcript is
/// emptied.
///
/// 1. state = hash(state | transcript)
/// 2. transcript = Vec::new()
/// 3. challenge = bytes_to_field(state)
pub struct SolidityTranscript {
    pub(crate) state: [u8; KECCAK256_STATE_SIZE],
    pub(crate) transcript: Vec<u8>,
}

impl<F: PrimeField> PlonkTranscript<F> for SolidityTranscript {
    /// Create a new plonk transcript. `label` is omitted for efficiency.
    fn new(_label: &'static [u8]) -> Self {
        SolidityTranscript {
            state: [0u8; KECCAK256_STATE_SIZE],
            transcript: Vec::new(),
        }
    }
    /// Append the message to the transcript. `_label` is omitted for
    /// efficiency.
    fn append_message(&mut self, _label: &'static [u8], msg: &[u8]) -> Result<(), PlonkError> {
        // We remove the labels for better efficiency
        self.transcript.extend_from_slice(msg);
        Ok(())
    }

    // override default implementation since we want to use BigEndian serialization
    fn append_commitment<E, P>(
        &mut self,
        label: &'static [u8],
        comm: &Commitment<E>,
    ) -> Result<(), PlonkError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        P: SWCurveConfig<BaseField = F>,
    {
        let zero = F::zero();
        let (x, y) = if comm.0.is_zero() {
            // this is solidity precompile representation of Points of Infinity
            (&zero, &zero)
        } else {
            comm.0.xy().unwrap()
        };

        <Self as PlonkTranscript<F>>::append_message(
            self,
            label,
            &[x.into_bigint().to_bytes_be(), y.into_bigint().to_bytes_be()].concat(),
        )
    }

    // override default implementation since we want to use BigEndian serialization
    fn append_field_elem<E>(
        &mut self,
        label: &'static [u8],
        challenge: &E::ScalarField,
    ) -> Result<(), PlonkError>
    where
        E: Pairing<BaseField = F>,
    {
        <Self as PlonkTranscript<F>>::append_message(
            self,
            label,
            &challenge.into_bigint().to_bytes_be(),
        )
    }

    fn append_vk_and_pub_input<E, P>(
        &mut self,
        vk: &VerifyingKey<E>,
        pub_input: &[E::ScalarField],
    ) -> Result<(), PlonkError>
    where
        E: Pairing<BaseField = F, G1Affine = Affine<P>>,
        E::ScalarField: PrimeField,
        P: SWCurveConfig<BaseField = F>,
    {
        <Self as PlonkTranscript<F>>::append_message(
            self,
            b"field size in bits",
            E::ScalarField::MODULUS_BIT_SIZE.to_be_bytes().as_ref(),
        )?;
        <Self as PlonkTranscript<F>>::append_message(
            self,
            b"domain size",
            vk.domain_size.to_be_bytes().as_ref(),
        )?;
        <Self as PlonkTranscript<F>>::append_message(
            self,
            b"input size",
            vk.num_inputs.to_be_bytes().as_ref(),
        )?;
        // in EVM, memory word size is 32 bytes, the first 3 fields put onto the
        // transcript occupies 4+8+8=20 bytes, thus to align with the memory
        // boundray, we pad with 12 bytes of zeros.
        <Self as PlonkTranscript<F>>::append_message(
            self,
            b"EVM word alignment padding",
            &[0u8; 12],
        )?;

        // include [x]_2 G2 point from SRS
        // all G1 points from SRS are implicit reflected in committed polys
        //
        // Since this is a fixed value, we don't need solidity-efficient serialization,
        // we simply append the `to_bytes!()` which uses compressed, little-endian form
        // instead of other proof-dependent field like number of public inputs or
        // concrete polynomial commitments which uses uncompressed, big-endian
        // form.
        <Self as PlonkTranscript<F>>::append_message(
            self,
            b"SRS G2 element",
            &to_bytes!(&vk.open_key.powers_of_h[1])?,
        )?;

        self.append_field_elems::<E>(b"wire subsets separators", &vk.k)?;
        self.append_commitments(b"selector commitments", &vk.selector_comms)?;
        self.append_commitments(b"sigma commitments", &vk.sigma_comms)?;
        self.append_field_elems::<E>(b"public input", pub_input)
    }

    fn get_challenge<E>(&mut self, _label: &'static [u8]) -> Result<E::ScalarField, PlonkError>
    where
        E: Pairing<BaseField = F>,
        E::ScalarField: PrimeField,
    {
        // 1. state = hash(state | transcript)
        let mut hasher = Keccak256::new();
        hasher.update(self.state);
        hasher.update(&self.transcript);
        let buf = hasher.finalize();
        self.state.copy_from_slice(&buf);

        // 2. transcript = Vec::new()
        self.transcript = Vec::new();

        // 3. challenge = bytes_to_field(state)
        Ok(E::ScalarField::from_be_bytes_mod_order(&buf))
    }
}

#[test]
fn test_solidity_keccak() {
    use hex::FromHex;
    use sha3::{Digest, Keccak256};
    let message = "the quick brown fox jumps over the lazy dog".as_bytes();

    let mut hasher = Keccak256::new();
    hasher.update(message);
    let output = hasher.finalize();

    // test example result yanked from smart contract execution
    assert_eq!(
        output[..],
        <[u8; 32]>::from_hex("865bf05cca7ba26fb8051e8366c6d19e21cadeebe3ee6bfa462b5c72275414ec")
            .unwrap()
    );
}