jf_relation/gadgets/
cmp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.

// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.

//! Comparison gadgets for circuit

use crate::{BoolVar, Circuit, CircuitError, PlonkCircuit, Variable};
use ark_ff::{BigInteger, PrimeField};

impl<F: PrimeField> PlonkCircuit<F> {
    /// Constrain that `a` < `b`.
    pub fn enforce_lt(&mut self, a: Variable, b: Variable) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        self.check_var_bound(b)?;
        self.enforce_lt_internal(a, b)
    }

    /// Constrain that `a` <= `b`
    pub fn enforce_leq(&mut self, a: Variable, b: Variable) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        let c = self.is_lt(b, a)?;
        self.enforce_constant(c.0, F::zero())
    }

    /// Constrain that `a` > `b`.
    pub fn enforce_gt(&mut self, a: Variable, b: Variable) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        self.enforce_lt(b, a)
    }

    /// Constrain that `a` >= `b`.
    pub fn enforce_geq(&mut self, a: Variable, b: Variable) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        let c = self.is_lt(a, b)?;
        self.enforce_constant(c.into(), F::zero())
    }

    /// Returns a `BoolVar` indicating whether `a` < `b`.
    pub fn is_lt(&mut self, a: Variable, b: Variable) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        self.check_var_bound(b)?;
        self.is_lt_internal(a, b)
    }

    /// Returns a `BoolVar` indicating whether `a` > `b`.
    pub fn is_gt(&mut self, a: Variable, b: Variable) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.is_lt(b, a)
    }

    /// Returns a `BoolVar` indicating whether `a` <= `b`.
    pub fn is_leq(&mut self, a: Variable, b: Variable) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        self.check_var_bound(b)?;
        let c = self.is_lt_internal(b, a)?;
        self.logic_neg(c)
    }

    /// Returns a `BoolVar` indicating whether `a` >= `b`.
    pub fn is_geq(&mut self, a: Variable, b: Variable) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        self.check_var_bound(b)?;
        let c = self.is_lt_internal(a, b)?;
        self.logic_neg(c)
    }

    /// Returns a `BoolVar` indicating whether the variable `a` is less than a
    /// given constant `val`.
    pub fn is_lt_constant(&mut self, a: Variable, val: F) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.is_lt(a, b)
    }

    /// Returns a `BoolVar` indicating whether the variable `a` is less than or
    /// equal to a given constant `val`.
    pub fn is_leq_constant(&mut self, a: Variable, val: F) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.is_leq(a, b)
    }

    /// Returns a `BoolVar` indicating whether the variable `a` is greater than
    /// a given constant `val`.
    pub fn is_gt_constant(&mut self, a: Variable, val: F) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        self.is_gt_constant_internal(a, &val)
    }

    /// Returns a `BoolVar` indicating whether the variable `a` is greater than
    /// or equal a given constant `val`.
    pub fn is_geq_constant(&mut self, a: Variable, val: F) -> Result<BoolVar, CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.is_geq(a, b)
    }

    /// Enforce the variable `a` to be less than a
    /// given constant `val`.
    pub fn enforce_lt_constant(&mut self, a: Variable, val: F) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.enforce_lt(a, b)
    }

    /// Enforce the variable `a` to be less than or
    /// equal to a given constant `val`.
    pub fn enforce_leq_constant(&mut self, a: Variable, val: F) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.enforce_leq(a, b)
    }

    /// Enforce the variable `a` to be greater than
    /// a given constant `val`.
    pub fn enforce_gt_constant(&mut self, a: Variable, val: F) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.enforce_gt(a, b)
    }

    /// Enforce the variable `a` to be greater than
    /// or equal a given constant `val`.
    pub fn enforce_geq_constant(&mut self, a: Variable, val: F) -> Result<(), CircuitError>
    where
        F: PrimeField,
    {
        self.check_var_bound(a)?;
        let b = self.create_constant_variable(val)?;
        self.enforce_geq(a, b)
    }
}

/// Private helper functions for comparison gate
impl<F: PrimeField> PlonkCircuit<F> {
    /// Returns 2 `BoolVar`s.
    /// First indicates whether `a` <= (q-1)/2 and `b` > (q-1)/2.
    /// Second indicates whether `a` and `b` are both <= (q-1)/2
    /// or both > (q-1)/2.
    fn msb_check_internal(
        &mut self,
        a: Variable,
        b: Variable,
    ) -> Result<(BoolVar, BoolVar), CircuitError> {
        let a_gt_const = self.is_gt_constant_internal(a, &F::from(F::MODULUS_MINUS_ONE_DIV_TWO))?;
        let b_gt_const = self.is_gt_constant_internal(b, &F::from(F::MODULUS_MINUS_ONE_DIV_TWO))?;
        let a_leq_const = self.logic_neg(a_gt_const)?;
        // Check whether `a` <= (q-1)/2 and `b` > (q-1)/2
        let msb_check = self.logic_and(a_leq_const, b_gt_const)?;
        // Check whether `a` and `b` are both <= (q-1)/2 or
        // are both > (q-1)/2
        let msb_eq = self.is_equal(a_gt_const.into(), b_gt_const.into())?;
        Ok((msb_check, msb_eq))
    }

    /// Return a variable indicating whether `a` < `b`.
    fn is_lt_internal(&mut self, a: Variable, b: Variable) -> Result<BoolVar, CircuitError> {
        let (msb_check, msb_eq) = self.msb_check_internal(a, b)?;
        // check whether (a-b) > (q-1)/2
        let c = self.sub(a, b)?;
        let cmp_result = self.is_gt_constant_internal(c, &F::from(F::MODULUS_MINUS_ONE_DIV_TWO))?;
        let cmp_result = self.logic_and(msb_eq, cmp_result)?;

        self.logic_or(msb_check, cmp_result)
    }

    /// Constrain that `a` < `b`
    fn enforce_lt_internal(&mut self, a: Variable, b: Variable) -> Result<(), CircuitError> {
        let (msb_check, msb_eq) = self.msb_check_internal(a, b)?;
        // check whether (a-b) <= (q-1)/2
        let c = self.sub(a, b)?;
        let cmp_result = self.is_gt_constant_internal(c, &F::from(F::MODULUS_MINUS_ONE_DIV_TWO))?;
        let cmp_result = self.logic_and(msb_eq, cmp_result)?;

        self.logic_or_gate(msb_check, cmp_result)
    }

    /// Helper function to check whether `a` is greater than a given
    /// constant. Let N = F::MODULUS_BIT_SIZE, it assumes that the
    /// constant < 2^N. And it uses at most N AND/OR gates.
    fn is_gt_constant_internal(
        &mut self,
        a: Variable,
        constant: &F,
    ) -> Result<BoolVar, CircuitError> {
        let a_bits_le = self.unpack(a, F::MODULUS_BIT_SIZE as usize)?;
        let const_bits_le = constant.into_bigint().to_bits_le();

        // Iterating from LSB to MSB. Skip the front consecutive 1's.
        // Put an OR gate for bit 0 and an AND gate for bit 1.
        let mut zipped = const_bits_le
            .into_iter()
            .chain(ark_std::iter::repeat(false))
            .take(a_bits_le.len())
            .zip(a_bits_le.iter())
            .skip_while(|(b, _)| *b);
        if let Some((_, &var)) = zipped.next() {
            zipped.try_fold(var, |current, (b, a)| -> Result<BoolVar, CircuitError> {
                if b {
                    self.logic_and(*a, current)
                } else {
                    self.logic_or(*a, current)
                }
            })
        } else {
            // the constant is all one
            Ok(BoolVar(self.zero()))
        }
    }
}

#[cfg(test)]
mod test {
    use crate::{BoolVar, Circuit, CircuitError, PlonkCircuit};
    use ark_bls12_377::Fq as Fq377;
    use ark_ed_on_bls12_377::Fq as FqEd377;
    use ark_ed_on_bls12_381::Fq as FqEd381;
    use ark_ed_on_bn254::Fq as FqEd254;
    use ark_ff::PrimeField;
    use ark_std::cmp::Ordering;
    use itertools::multizip;

    #[test]
    fn test_cmp_gates() -> Result<(), CircuitError> {
        test_cmp_helper::<FqEd254>()?;
        test_cmp_helper::<FqEd377>()?;
        test_cmp_helper::<FqEd381>()?;
        test_cmp_helper::<Fq377>()
    }

    fn test_cmp_helper<F: PrimeField>() -> Result<(), CircuitError> {
        let list = [
            (F::from(5u32), F::from(5u32)),
            (F::from(1u32), F::from(2u32)),
            (
                F::from(F::MODULUS_MINUS_ONE_DIV_TWO).add(F::one()),
                F::from(2u32),
            ),
            (
                F::from(F::MODULUS_MINUS_ONE_DIV_TWO).add(F::one()),
                F::from(F::MODULUS_MINUS_ONE_DIV_TWO).mul(F::from(2u32)),
            ),
        ];
        multizip((
            list,
            [Ordering::Less, Ordering::Greater],
            [false, true],
            [false, true],
        )).try_for_each(
                |((a, b), ordering, should_also_check_equality,
                 is_b_constant)|
                 -> Result<(), CircuitError> {
                    test_enforce_cmp_helper(&a, &b, ordering, should_also_check_equality, is_b_constant)?;
                    test_enforce_cmp_helper(&b, &a, ordering, should_also_check_equality, is_b_constant)?;
                    test_is_cmp_helper(&a, &b, ordering, should_also_check_equality, is_b_constant)?;
                    test_is_cmp_helper(&b, &a, ordering, should_also_check_equality, is_b_constant)
                },
            )
    }

    fn test_is_cmp_helper<F: PrimeField>(
        a: &F,
        b: &F,
        ordering: Ordering,
        should_also_check_equality: bool,
        is_b_constant: bool,
    ) -> Result<(), CircuitError> {
        let mut circuit = PlonkCircuit::<F>::new_turbo_plonk();
        let expected_result = if a.cmp(b) == ordering
            || (a.cmp(b) == Ordering::Equal && should_also_check_equality)
        {
            F::one()
        } else {
            F::zero()
        };
        let a = circuit.create_variable(*a)?;
        let c: BoolVar = if is_b_constant {
            match ordering {
                Ordering::Less => {
                    if should_also_check_equality {
                        circuit.is_leq_constant(a, *b)?
                    } else {
                        circuit.is_lt_constant(a, *b)?
                    }
                },
                Ordering::Greater => {
                    if should_also_check_equality {
                        circuit.is_geq_constant(a, *b)?
                    } else {
                        circuit.is_gt_constant(a, *b)?
                    }
                },
                // Equality test will be handled elsewhere, comparison gate test will not enter here
                Ordering::Equal => circuit.create_boolean_variable_unchecked(expected_result)?,
            }
        } else {
            let b = circuit.create_variable(*b)?;
            match ordering {
                Ordering::Less => {
                    if should_also_check_equality {
                        circuit.is_leq(a, b)?
                    } else {
                        circuit.is_lt(a, b)?
                    }
                },
                Ordering::Greater => {
                    if should_also_check_equality {
                        circuit.is_geq(a, b)?
                    } else {
                        circuit.is_gt(a, b)?
                    }
                },
                // Equality test will be handled elsewhere, comparison gate test will not enter here
                Ordering::Equal => circuit.create_boolean_variable_unchecked(expected_result)?,
            }
        };
        assert!(circuit.witness(c.into())?.eq(&expected_result));
        assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
        Ok(())
    }
    fn test_enforce_cmp_helper<F: PrimeField>(
        a: &F,
        b: &F,
        ordering: Ordering,
        should_also_check_equality: bool,
        is_b_constant: bool,
    ) -> Result<(), CircuitError> {
        let mut circuit = PlonkCircuit::<F>::new_turbo_plonk();
        let expected_result =
            a.cmp(b) == ordering || (a.cmp(b) == Ordering::Equal && should_also_check_equality);
        let a = circuit.create_variable(*a)?;
        if is_b_constant {
            match ordering {
                Ordering::Less => {
                    if should_also_check_equality {
                        circuit.enforce_leq_constant(a, *b)?
                    } else {
                        circuit.enforce_lt_constant(a, *b)?
                    }
                },
                Ordering::Greater => {
                    if should_also_check_equality {
                        circuit.enforce_geq_constant(a, *b)?
                    } else {
                        circuit.enforce_gt_constant(a, *b)?
                    }
                },
                // Equality test will be handled elsewhere, comparison gate test will not enter here
                Ordering::Equal => (),
            }
        } else {
            let b = circuit.create_variable(*b)?;
            match ordering {
                Ordering::Less => {
                    if should_also_check_equality {
                        circuit.enforce_leq(a, b)?
                    } else {
                        circuit.enforce_lt(a, b)?
                    }
                },
                Ordering::Greater => {
                    if should_also_check_equality {
                        circuit.enforce_geq(a, b)?
                    } else {
                        circuit.enforce_gt(a, b)?
                    }
                },
                // Equality test will be handled elsewhere, comparison gate test will not enter here
                Ordering::Equal => (),
            }
        };
        if expected_result {
            assert!(circuit.check_circuit_satisfiability(&[]).is_ok())
        } else {
            assert!(circuit.check_circuit_satisfiability(&[]).is_err());
        }
        Ok(())
    }
}