jf_relation/gadgets/ecc/emulated/
twisted_edwards.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.

// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.

//! Twisted Edwards curve point addition

use crate::{
    gadgets::{ecc::TEPoint, EmulatedVariable, EmulationConfig},
    BoolVar, Circuit, CircuitError, PlonkCircuit,
};
use ark_ff::PrimeField;

/// The variable represents an TE point in the emulated field.
#[derive(Debug, Clone)]
pub struct EmulatedTEPointVariable<E: PrimeField>(pub EmulatedVariable<E>, pub EmulatedVariable<E>);

impl<F: PrimeField> PlonkCircuit<F> {
    /// Return the witness point
    pub fn emulated_te_point_witness<E: EmulationConfig<F>>(
        &self,
        point_var: &EmulatedTEPointVariable<E>,
    ) -> Result<TEPoint<E>, CircuitError> {
        let x = self.emulated_witness(&point_var.0)?;
        let y = self.emulated_witness(&point_var.1)?;
        Ok(TEPoint(x, y))
    }

    /// Add a new emulated EC point (as witness)
    pub fn create_emulated_te_point_variable<E: EmulationConfig<F>>(
        &mut self,
        p: TEPoint<E>,
    ) -> Result<EmulatedTEPointVariable<E>, CircuitError> {
        let x = self.create_emulated_variable(p.0)?;
        let y = self.create_emulated_variable(p.1)?;
        Ok(EmulatedTEPointVariable(x, y))
    }

    /// Add a new constant emulated EC point
    pub fn create_constant_emulated_te_point_variable<E: EmulationConfig<F>>(
        &mut self,
        p: TEPoint<E>,
    ) -> Result<EmulatedTEPointVariable<E>, CircuitError> {
        let x = self.create_constant_emulated_variable(p.0)?;
        let y = self.create_constant_emulated_variable(p.1)?;
        Ok(EmulatedTEPointVariable(x, y))
    }

    /// Add a new public emulated EC point
    pub fn create_public_emulated_te_point_variable<E: EmulationConfig<F>>(
        &mut self,
        p: TEPoint<E>,
    ) -> Result<EmulatedTEPointVariable<E>, CircuitError> {
        let x = self.create_public_emulated_variable(p.0)?;
        let y = self.create_public_emulated_variable(p.1)?;
        Ok(EmulatedTEPointVariable(x, y))
    }

    /// Obtain an emulated point variable of the conditional selection from 2
    /// emulated point variables. `b` is a boolean variable that indicates
    /// selection of P_b from (P0, P1).
    /// Return error if invalid input parameters are provided.
    pub fn binary_emulated_te_point_vars_select<E: EmulationConfig<F>>(
        &mut self,
        b: BoolVar,
        p0: &EmulatedTEPointVariable<E>,
        p1: &EmulatedTEPointVariable<E>,
    ) -> Result<EmulatedTEPointVariable<E>, CircuitError> {
        let select_x = self.conditional_select_emulated(b, &p0.0, &p1.0)?;
        let select_y = self.conditional_select_emulated(b, &p0.1, &p1.1)?;

        Ok(EmulatedTEPointVariable::<E>(select_x, select_y))
    }

    /// Constrain two emulated point variables to be the same.
    /// Return error if the input point variables are invalid.
    pub fn enforce_emulated_te_point_equal<E: EmulationConfig<F>>(
        &mut self,
        p0: &EmulatedTEPointVariable<E>,
        p1: &EmulatedTEPointVariable<E>,
    ) -> Result<(), CircuitError> {
        self.enforce_emulated_var_equal(&p0.0, &p1.0)?;
        self.enforce_emulated_var_equal(&p0.1, &p1.1)?;
        Ok(())
    }

    /// Obtain a bool variable representing whether two input emulated point
    /// variables are equal. Return error if variables are invalid.
    pub fn is_emulated_te_point_equal<E: EmulationConfig<F>>(
        &mut self,
        p0: &EmulatedTEPointVariable<E>,
        p1: &EmulatedTEPointVariable<E>,
    ) -> Result<BoolVar, CircuitError> {
        let mut r0 = self.is_emulated_var_equal(&p0.0, &p1.0)?;
        let r1 = self.is_emulated_var_equal(&p0.1, &p1.1)?;
        r0.0 = self.mul(r0.0, r1.0)?;
        Ok(r0)
    }

    /// Constrain variable `p2` to be the point addition of `p0` and
    /// `p1` over an elliptic curve.
    pub fn emulated_te_ecc_add_gate<E: EmulationConfig<F>>(
        &mut self,
        p0: &EmulatedTEPointVariable<E>,
        p1: &EmulatedTEPointVariable<E>,
        p2: &EmulatedTEPointVariable<E>,
        d: E,
    ) -> Result<(), CircuitError> {
        let x0y1 = self.emulated_mul(&p0.0, &p1.1)?;
        let x1y0 = self.emulated_mul(&p1.0, &p0.1)?;
        let x0x1 = self.emulated_mul(&p0.0, &p1.0)?;
        let y0y1 = self.emulated_mul(&p0.1, &p1.1)?;
        let x0x1y0y1 = self.emulated_mul(&x0x1, &y0y1)?;
        let dx0x1y0y1 = self.emulated_mul_constant(&x0x1y0y1, d)?;

        // checking that x2 = x0y1 + x1y0 - dx0y0x1y1x2
        // t1 = x0y1 + x1y0
        let t1 = self.emulated_add(&x0y1, &x1y0)?;
        // t2 = d x0 y0 x1 y1 x2
        let t2 = self.emulated_mul(&dx0x1y0y1, &p2.0)?;
        self.emulated_add_gate(&p2.0, &t2, &t1)?;

        // checking that y2 = x0x1 + y0y1 + dx0y0x1y1y2
        // t1 = x0x1 + y0y1
        let t1 = self.emulated_add(&x0x1, &y0y1)?;
        let t2 = self.emulated_mul(&dx0x1y0y1, &p2.1)?;
        self.emulated_add_gate(&t1, &t2, &p2.1)
    }

    /// Obtain a variable to the point addition result of `a` + `b`
    pub fn emulated_te_ecc_add<E: EmulationConfig<F>>(
        &mut self,
        p0: &EmulatedTEPointVariable<E>,
        p1: &EmulatedTEPointVariable<E>,
        d: E,
    ) -> Result<EmulatedTEPointVariable<E>, CircuitError> {
        let x0 = self.emulated_witness(&p0.0)?;
        let y0 = self.emulated_witness(&p0.1)?;
        let x1 = self.emulated_witness(&p1.0)?;
        let y1 = self.emulated_witness(&p1.1)?;

        let t1 = x0 * y1;
        let t2 = x1 * y0;
        let dx0x1y0y1 = d * t1 * t2;

        let x2 = (t1 + t2) / (E::one() + dx0x1y0y1);
        let y2 = (x0 * x1 + y0 * y1) / (E::one() - dx0x1y0y1);
        let p2 = self.create_emulated_te_point_variable(TEPoint(x2, y2))?;
        self.emulated_te_ecc_add_gate(p0, p1, &p2, d)?;
        Ok(p2)
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        gadgets::{
            ecc::{conversion::*, TEPoint},
            EmulationConfig,
        },
        Circuit, PlonkCircuit,
    };
    use ark_bls12_377::{g1::Config as Param377, Fq as Fq377};
    use ark_bn254::Fr as Fr254;
    use ark_ec::{
        short_weierstrass::{Projective, SWCurveConfig},
        CurveGroup, Group,
    };
    use ark_ff::{MontFp, PrimeField};
    use ark_std::{UniformRand, Zero};

    #[test]
    fn test_emulated_te_point_addition() {
        let d : Fq377 = MontFp!("122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179");
        test_emulated_te_point_addition_helper::<Fq377, Fr254, Param377>(d);
    }

    fn test_emulated_te_point_addition_helper<E, F, P>(d: E)
    where
        E: EmulationConfig<F> + SWToTEConParam,
        F: PrimeField,
        P: SWCurveConfig<BaseField = E>,
    {
        let mut rng = jf_utils::test_rng();
        let neutral = Projective::<P>::zero().into_affine();
        let p1 = Projective::<P>::rand(&mut rng).into_affine();
        let p2 = Projective::<P>::rand(&mut rng).into_affine();
        let expected: TEPoint<E> = (p1 + p2).into_affine().into();
        let wrong_result: TEPoint<E> = (p1 + p2 + Projective::<P>::generator())
            .into_affine()
            .into();
        let p1: TEPoint<E> = p1.into();
        let p2: TEPoint<E> = p2.into();

        let mut circuit = PlonkCircuit::<F>::new_turbo_plonk();

        let var_p1 = circuit.create_emulated_te_point_variable(p1).unwrap();
        let var_p2 = circuit.create_emulated_te_point_variable(p2).unwrap();
        let var_result = circuit.emulated_te_ecc_add(&var_p1, &var_p2, d).unwrap();
        assert_eq!(
            circuit.emulated_te_point_witness(&var_result).unwrap(),
            expected
        );
        let var_neutral = circuit
            .create_emulated_te_point_variable(neutral.into())
            .unwrap();
        let var_neutral_result = circuit
            .emulated_te_ecc_add(&var_p1, &var_neutral, d)
            .unwrap();
        assert_eq!(
            circuit
                .emulated_te_point_witness(&var_neutral_result)
                .unwrap(),
            p1
        );
        let var_neutral_result = circuit
            .emulated_te_ecc_add(&var_neutral, &var_p1, d)
            .unwrap();
        assert_eq!(
            circuit
                .emulated_te_point_witness(&var_neutral_result)
                .unwrap(),
            p1
        );
        assert!(circuit.check_circuit_satisfiability(&[]).is_ok());

        let var_wrong_result = circuit
            .create_emulated_te_point_variable(wrong_result)
            .unwrap();
        circuit
            .emulated_te_ecc_add_gate(&var_p1, &var_p2, &var_wrong_result, d)
            .unwrap();
        assert!(circuit.check_circuit_satisfiability(&[]).is_err());
    }

    #[test]
    fn test_emulated_point_select() {
        test_emulated_point_select_helper::<Fq377, Fr254, Param377>();
    }

    fn test_emulated_point_select_helper<E, F, P>()
    where
        E: EmulationConfig<F> + SWToTEConParam,
        F: PrimeField,
        P: SWCurveConfig<BaseField = E>,
    {
        let mut rng = jf_utils::test_rng();
        let p1 = Projective::<P>::rand(&mut rng).into_affine();
        let p2 = Projective::<P>::rand(&mut rng).into_affine();

        let mut circuit = PlonkCircuit::<F>::new_turbo_plonk();

        let var_p1 = circuit
            .create_emulated_te_point_variable(p1.into())
            .unwrap();
        let var_p2 = circuit
            .create_emulated_te_point_variable(p2.into())
            .unwrap();
        let b = circuit.create_boolean_variable(true).unwrap();
        let var_p3 = circuit
            .binary_emulated_te_point_vars_select(b, &var_p1, &var_p2)
            .unwrap();
        assert_eq!(
            circuit.emulated_te_point_witness(&var_p3).unwrap(),
            p2.into()
        );
        assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
        *circuit.witness_mut(var_p3.0 .0[0]) = F::zero();
        assert!(circuit.check_circuit_satisfiability(&[]).is_err());
    }

    #[test]
    fn test_enforce_emulated_point_eq() {
        test_enforce_emulated_point_eq_helper::<Fq377, Fr254, Param377>();
    }

    fn test_enforce_emulated_point_eq_helper<E, F, P>()
    where
        E: EmulationConfig<F> + SWToTEConParam,
        F: PrimeField,
        P: SWCurveConfig<BaseField = E>,
    {
        let mut rng = jf_utils::test_rng();
        let p1 = Projective::<P>::rand(&mut rng).into_affine();
        let p2 = (p1 + Projective::<P>::generator()).into_affine();

        let mut circuit = PlonkCircuit::<F>::new_turbo_plonk();

        let var_p1 = circuit
            .create_emulated_te_point_variable(p1.into())
            .unwrap();
        let var_p2 = circuit
            .create_emulated_te_point_variable(p2.into())
            .unwrap();
        let var_p3 = circuit
            .create_emulated_te_point_variable(p1.into())
            .unwrap();
        circuit
            .enforce_emulated_te_point_equal(&var_p1, &var_p3)
            .unwrap();
        assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
        circuit
            .enforce_emulated_te_point_equal(&var_p1, &var_p2)
            .unwrap();
        assert!(circuit.check_circuit_satisfiability(&[]).is_err());
    }
}