jf_relation/gadgets/ecc/
glv.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.

// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.

use crate::{
    gadgets::ecc::{MultiScalarMultiplicationCircuit, PointVariable},
    BoolVar, Circuit, CircuitError, PlonkCircuit, Variable,
};
use ark_ec::{
    twisted_edwards::{Projective, TECurveConfig},
    CurveGroup,
};
use ark_ff::{PrimeField, Zero};
use jf_utils::field_switching;
use num_bigint::{BigInt, BigUint};

use super::TEPoint;

// phi(P) = lambda*P for all P
// constants that are used to calculate phi(P)
// see <https://eprint.iacr.org/2021/1152>
const COEFF_B: [u8; 32] = [
    180, 16, 37, 23, 77, 1, 15, 238, 214, 244, 154, 13, 119, 18, 167, 46, 136, 26, 81, 99, 58, 13,
    240, 97, 165, 38, 132, 130, 139, 242, 201, 82,
];

const COEFF_C: [u8; 32] = [
    61, 11, 101, 223, 108, 128, 92, 81, 233, 244, 54, 255, 207, 171, 86, 132, 7, 209, 23, 108, 253,
    110, 124, 169, 195, 87, 84, 134, 207, 36, 198, 108,
];
/// The lambda parameter for decomposition.
const LAMBDA: [u8; 32] = [
    5, 223, 131, 135, 64, 33, 61, 209, 110, 5, 165, 112, 185, 157, 196, 207, 43, 199, 56, 43, 86,
    73, 248, 237, 147, 164, 57, 74, 220, 243, 180, 19,
];
/// Lower bits of Lambda, s.t. LAMBDA = LAMBDA_1 + 2^128 LAMBDA_2
const LAMBDA_1: [u8; 32] = [
    5, 223, 131, 135, 64, 33, 61, 209, 110, 5, 165, 112, 185, 157, 196, 207, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0,
];
/// Higher bits of Lambda, s.t.
// LAMBDA = LAMBDA_1 + 2^128 LAMBDA_2
const LAMBDA_2: [u8; 32] = [
    43, 199, 56, 43, 86, 73, 248, 237, 147, 164, 57, 74, 220, 243, 180, 19, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
];
/// Lower bits of r, s.t. r = r1 +
// 2^128 r2
const R1: [u8; 32] = [
    225, 231, 118, 40, 181, 6, 253, 116, 113, 4, 25, 116, 0, 135, 143, 255, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
];
/// Higher bits of r, s.t. r = r1
// + 2^128 r2
const R2: [u8; 32] = [
    0, 118, 104, 2, 2, 118, 206, 12, 82, 95, 103, 202, 212, 105, 251, 28, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
];

const COEFF_N11: [u8; 32] = [
    31, 24, 137, 151, 74, 249, 2, 75, 142, 146, 230, 75, 0, 226, 95, 85, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0,
];

const COEFF_N12: [u8; 32] = [
    68, 31, 214, 35, 26, 89, 226, 248, 93, 143, 94, 229, 238, 179, 20, 8, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0,
];

const COEFF_N21: [u8; 32] = [
    136, 62, 172, 71, 52, 178, 196, 241, 187, 30, 189, 202, 221, 103, 41, 16, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0,
];
const COEFF_N22: [u8; 32] = [
    194, 207, 237, 144, 106, 13, 250, 41, 227, 113, 50, 40, 0, 165, 47, 170, 0, 118, 104, 2, 2,
    118, 206, 12, 82, 95, 103, 202, 212, 105, 251, 28,
];

// GLV related gates
impl<F> PlonkCircuit<F>
where
    F: PrimeField,
{
    /// Perform GLV multiplication in circuit (which costs a few less
    /// constraints).
    pub fn glv_mul<P: TECurveConfig<BaseField = F>>(
        &mut self,
        scalar: Variable,
        base: &PointVariable,
    ) -> Result<PointVariable, CircuitError> {
        self.check_var_bound(scalar)?;
        self.check_point_var_bound(base)?;

        let (s1_var, s2_var, s2_sign_var) =
            scalar_decomposition_gate::<P::BaseField, P::ScalarField>(self, &scalar)?;

        let endo_base_var = endomorphism_circuit::<_, P>(self, base)?;
        multi_scalar_mul_circuit::<_, P>(self, base, s1_var, &endo_base_var, s2_var, s2_sign_var)
    }
}

/// The circuit for 2 base scalar multiplication with scalar bit length 128.
fn multi_scalar_mul_circuit<F, P>(
    circuit: &mut PlonkCircuit<F>,
    base: &PointVariable,
    scalar_1: Variable,
    endo_base: &PointVariable,
    scalar_2: Variable,
    scalar_2_sign_var: BoolVar,
) -> Result<PointVariable, CircuitError>
where
    F: PrimeField,
    P: TECurveConfig<BaseField = F>,
{
    let endo_base_neg = circuit.inverse_point(endo_base)?;
    let endo_base =
        circuit.binary_point_vars_select(scalar_2_sign_var, endo_base, &endo_base_neg)?;

    MultiScalarMultiplicationCircuit::<F, P>::msm_with_var_scalar_length(
        circuit,
        &[*base, endo_base],
        &[scalar_1, scalar_2],
        128,
    )
}

/// Mapping a point G to phi(G):= lambda G where phi is the endomorphism
fn endomorphism<F, P>(base: &TEPoint<F>) -> TEPoint<F>
where
    F: PrimeField,
    P: TECurveConfig<BaseField = F>,
{
    let x = base.get_x();
    let y = base.get_y();
    let b = F::from_le_bytes_mod_order(COEFF_B.as_ref());
    let c = F::from_le_bytes_mod_order(COEFF_C.as_ref());

    let xy = x * y;
    let y_square = y * y;
    let f_y = c * (F::one() - y_square);
    let g_y = b * (y_square + b);
    let h_y = y_square - b;

    Projective::<P>::new(f_y * h_y, g_y * xy, F::one(), h_y * xy)
        .into_affine()
        .into()
}

/// The circuit for computing the point endomorphism.
fn endomorphism_circuit<F, P>(
    circuit: &mut PlonkCircuit<F>,
    point_var: &PointVariable,
) -> Result<PointVariable, CircuitError>
where
    F: PrimeField,
    P: TECurveConfig<BaseField = F>,
{
    let base = circuit.point_witness(point_var)?;
    let endo_point = endomorphism::<_, P>(&base);
    let endo_point_var = circuit.create_point_variable(endo_point)?;

    let b = F::from_le_bytes_mod_order(COEFF_B.as_ref());
    let c = F::from_le_bytes_mod_order(COEFF_C.as_ref());
    let b_square = b * b;

    let x_var = point_var.get_x();
    let y_var = point_var.get_y();

    // xy = x * y
    let xy_var = circuit.mul(x_var, y_var)?;

    // f(y) = c(1 - y^2)
    let wire = [y_var, y_var, circuit.zero(), circuit.zero()];
    let coeff = [F::zero(), F::zero(), F::zero(), F::zero()];
    let q_mul = [-c, F::zero()];
    let q_c = c;
    let f_y_var = circuit.gen_quad_poly(&wire, &coeff, &q_mul, q_c)?;

    // g(y) = b(y^2 + b)
    let wire = [y_var, y_var, circuit.zero(), circuit.zero()];
    let coeff = [F::zero(), F::zero(), F::zero(), F::zero()];
    let q_mul = [b, F::zero()];
    let q_c = b_square;
    let g_y_var = circuit.gen_quad_poly(&wire, &coeff, &q_mul, q_c)?;

    // h(y) = y^2 - b
    let wire = [y_var, y_var, circuit.zero(), circuit.zero()];
    let coeff = [F::zero(), F::zero(), F::zero(), F::zero()];
    let q_mul = [F::one(), F::zero()];
    let q_c = -b;
    let h_y_var = circuit.gen_quad_poly(&wire, &coeff, &q_mul, q_c)?;

    // res_x = f(y) / (xy)
    circuit.mul_gate(endo_point_var.get_x(), xy_var, f_y_var)?;
    // res_y = g(y) / h(y)
    circuit.mul_gate(endo_point_var.get_y(), h_y_var, g_y_var)?;

    Ok(endo_point_var)
}

/// Decompose a scalar s into k1, k2, s.t.
///     scalar = k1 - k2_sign * k2 * lambda
/// via a Babai's nearest plane algorithm
/// Guarantees that k1 and k2 are less than 128 bits.
fn scalar_decomposition<F: PrimeField>(scalar: &F) -> (F, F, bool) {
    let scalar_z: BigUint = (*scalar).into();

    let tmp = F::from_le_bytes_mod_order(COEFF_N11.as_ref());
    let n11: BigUint = tmp.into();

    let tmp = F::from_le_bytes_mod_order(COEFF_N12.as_ref());
    let n12: BigUint = tmp.into();

    let tmp = F::from_le_bytes_mod_order(COEFF_N21.as_ref());
    let n21: BigUint = tmp.into();

    let tmp = F::from_le_bytes_mod_order(COEFF_N22.as_ref());
    let n22: BigUint = tmp.into();

    let r: BigUint = F::MODULUS.into();
    let r_over_2 = &r / BigUint::from(2u8);

    // beta = vector([n,0]) * self.curve.N_inv
    let beta_1 = &scalar_z * &n11;
    let beta_2 = &scalar_z * &n12;

    let beta_1 = &beta_1 / &r;
    let beta_2 = &beta_2 / &r;

    // b = vector([int(beta[0]), int(beta[1])]) * self.curve.N
    let b1: BigUint = &beta_1 * &n11 + &beta_2 * &n21;
    let b2: BigUint = (&beta_1 * &n12 + &beta_2 * &n22) % r;

    let k1 = F::from(scalar_z - b1);
    let is_k2_pos = b2 < r_over_2;

    let k2 = if is_k2_pos { F::from(b2) } else { -F::from(b2) };

    (k1, k2, is_k2_pos)
}

macro_rules! fq_to_big_int {
    ($fq: expr) => {
        <BigInt as From<BigUint>>::from($fq.into_bigint().into())
    };
}

macro_rules! int_to_fq {
    ($in: expr) => {
        F::from_le_bytes_mod_order(&$in.to_bytes_le().1)
    };
}

// Input a scalar s as in Fq wires,
// compute k1, k2 and a k2_sign s.t.
//  s = k1 - k2_sign * k2 * lambda mod |Fr|
// where
// * s ~ 253 bits, private input
// * lambda ~ 253 bits, public input
// * k1, k2 each ~ 128 bits, private inputs
// * k2_sign - Boolean, private inputs
// Return the variables for k1 and k2
// and sign bit for k2.
#[allow(clippy::type_complexity)]
fn scalar_decomposition_gate<F, S>(
    circuit: &mut PlonkCircuit<F>,
    s_var: &Variable,
) -> Result<(Variable, Variable, BoolVar), CircuitError>
where
    F: PrimeField,
    S: PrimeField,
{
    // the order of scalar field
    // r = 13108968793781547619861935127046491459309155893440570251786403306729687672801 < 2^253
    // q = 52435875175126190479447740508185965837690552500527637822603658699938581184513 < 2^255

    // for an input scalar s,
    // we need to prove the following statement over ZZ
    //
    // (0) lambda * k2_sign * k2 + s = t * Fr::modulus + k1
    //
    // for some t, where
    // * t < (k2 + 1) < 2^128
    // * k1, k2 < sqrt{2r} < 2^128
    // * lambda, s, modulus are ~253 bits
    //
    // which becomes
    // (1) lambda_1 * k2_sign * k2 + 2^128 lambda_2 * k2_sign * k2 + s
    //        - t * r1 - t *2^128 r2 - k1 = 0
    // where
    // (2) lambda = lambda_1 + 2^128 lambda_2   <- public info
    // (3) Fr::modulus = r1 + 2^128 r2          <- public info
    // with
    //  lambda_1 and r1 < 2^128
    //  lambda_2 and r2 < 2^125
    //
    // reorganizing (1) gives us
    // (4)          lambda_1 * k2_sign * k2 + s - t * r1 - k1
    //     + 2^128 (lambda_2 * k2_sign * k2 - t * r2)
    //     = 0
    //
    // Now set
    // (5) tmp = lambda_1 * k2_sign * k2 + s - t * r1 - k1
    // with
    // (6) tmp = tmp1 + 2^128 tmp2
    // for tmp1 < 2^128 and tmp2 < 2^128
    //
    // that is
    // tmp1 will be the lower 128 bits of
    //     lambda * k2_sign * k2 + s - t * Fr::modulus + k1
    // which will be 0 due to (0).
    // (7) tmp1 =  (lambda_1 * k2_sign * k2 + s - t * r1 - k1) % 2^128 = 0
    // note that t * r1 < 2^254
    //
    // i.e. tmp2 will be the carrier overflowing 2^128,
    // and on the 2^128 term, we have
    // (8) tmp2 + lambda_2 * k2_sign * k2 - t * r2 = 0
    // also due to (0).
    //
    // the concrete statements that we need to prove (0) are
    //  (a) k1 < 2^128
    //  (b) k2 < 2^128
    //  (c) tmp1 = 0
    //  (d) tmp2 < 2^128
    //  (e) tmp = tmp1 + 2^128 tmp2
    //  (f) tmp =  lambda_1 * k2_sign * k2 + s - t * r1 - k1
    //  (g) tmp2 + lambda_2 * k2_sign * k2   = t * r2
    // which can all be evaluated over Fq without overflow

    // ============================================
    // step 1: build integers
    // ============================================
    // 2^128
    let two_to_128 = BigInt::from(2u64).pow(128);

    // s
    let s = circuit.witness(*s_var)?;
    let s_int = fq_to_big_int!(s);
    let s_fr = field_switching::<_, S>(&s);

    // lambda = lambda_1 + 2^128 lambda_2
    let lambda = F::from_le_bytes_mod_order(LAMBDA.as_ref());
    let lambda_1 = F::from_le_bytes_mod_order(LAMBDA_1.as_ref());

    let lambda_int = fq_to_big_int!(lambda);
    let lambda_1_int = fq_to_big_int!(lambda_1);
    let lambda_2 = F::from_le_bytes_mod_order(LAMBDA_2.as_ref());

    // s = k1 - lambda * k2 * k2_sign
    let (k1, k2, is_k2_positive) = scalar_decomposition(&s_fr);
    let k1_int = fq_to_big_int!(k1);
    let k2_int = fq_to_big_int!(k2);
    let k2_sign = if is_k2_positive {
        BigInt::from(1)
    } else {
        BigInt::from(-1)
    };
    let k2_with_sign = &k2_int * &k2_sign;

    // fr_order = r1 + 2^128 r2
    let fr_order_uint: BigUint = S::MODULUS.into();
    let fr_order_int: BigInt = fr_order_uint.into();
    let r1 = F::from_le_bytes_mod_order(R1.as_ref());
    let r1_int = fq_to_big_int!(r1);
    let r2 = F::from_le_bytes_mod_order(R2.as_ref());

    // t * t_sign = (lambda * k2 * k2_sign + s - k1) / fr_order
    let mut t_int = (&lambda_int * &k2_with_sign + &s_int - &k1_int) / &fr_order_int;
    let t_int_sign = if t_int < BigInt::zero() {
        t_int = -t_int;
        BigInt::from(-1)
    } else {
        BigInt::from(1)
    };
    let t_int_with_sign = &t_int * &t_int_sign;

    // tmp = tmp1 + 2^128 tmp2 =  lambda_1 * k2 * k2_sign + s - t * t_sign * r1 - k1
    let tmp_int = &lambda_1_int * &k2_with_sign + &s_int - &t_int_with_sign * &r1_int - &k1_int;
    let tmp2_int = &tmp_int / &two_to_128;

    #[cfg(test)]
    {
        use ark_ff::BigInteger;

        let fq_uint: BigUint = F::MODULUS.into();
        let fq_int: BigInt = fq_uint.into();

        let tmp1_int = &tmp_int % &two_to_128;

        let lambda_2_int = fq_to_big_int!(lambda_2);
        let r2_int = fq_to_big_int!(r2);
        // sanity checks
        // equation (0): lambda * k2_sign * k2 + s = t * t_sign * Fr::modulus + k1
        assert_eq!(
            &s_int + &lambda_int * &k2_with_sign,
            &k1_int + &t_int_with_sign * &fr_order_int
        );

        // equation (4)
        //              lambda_1 * k2_sign * k2 + s - t * t_sign * r1 - k1
        //     + 2^128 (lambda_2 * k2_sign * k2 - t * r2)
        //     = 0
        assert_eq!(
            &lambda_1_int * &k2_with_sign + &s_int - &t_int_with_sign * &r1_int - &k1_int
                + &two_to_128 * (&lambda_2_int * &k2_with_sign - &t_int_with_sign * &r2_int),
            BigInt::zero()
        );

        //  (a) k1 < 2^128
        //  (b) k2 < 2^128
        let k1_bits = get_bits(&k1.into_bigint().to_bits_le());
        let k2_bits = get_bits(&k1.into_bigint().to_bits_le());

        assert!(k1_bits < 128, "k1 bits {}", k1_bits);
        assert!(k2_bits < 128, "k2 bits {}", k1_bits);

        //  (c) tmp1 = 0
        //  (d) tmp2 < 2^128
        //  (e) tmp = tmp1 + 2^128 tmp2
        assert!(tmp1_int == BigInt::from(0));
        let tmp2_fq = F::from_le_bytes_mod_order(&tmp2_int.to_bytes_le().1);
        let tmp2_bits = get_bits(&tmp2_fq.into_bigint().to_bits_le());
        assert!(tmp1_int == BigInt::from(0));
        assert!(tmp2_bits < 128, "tmp2 bits {}", tmp2_bits);

        // equation (f): tmp1 + 2^128 tmp2 =  lambda_1 * k2_sign * k2 + s - t * t_sign *
        // r1 - k1
        assert_eq!(
            &tmp1_int + &two_to_128 * &tmp2_int,
            &lambda_1_int * &k2_with_sign + &s_int - &t_int_with_sign * &r1_int - &k1_int
        );
        assert!(&tmp_int + &t_int_with_sign * &r1_int + &k1_int < fq_int);

        assert!(&lambda_1_int * &k2_int + &s_int < fq_int);

        // equation (g) tmp2 + lambda_2 * k2_sign * k2 + s2  = t * t_sign * r2
        assert_eq!(
            &tmp2_int + &lambda_2_int * &k2_with_sign,
            &t_int_with_sign * &r2_int
        );

        // all intermediate data are positive
        assert!(k1_int >= BigInt::zero());
        assert!(k2_int >= BigInt::zero());
        assert!(t_int >= BigInt::zero());
        assert!(tmp_int >= BigInt::zero());
        assert!(tmp2_int >= BigInt::zero());

        // t and k2 has a same sign
        assert_eq!(t_int_sign, k2_sign);
    }

    // ============================================
    // step 2. build the variables
    // ============================================
    let two_to_128 = F::from(BigUint::from(2u64).pow(128));

    let k1_var = circuit.create_variable(int_to_fq!(k1_int))?;
    let k2_var = circuit.create_variable(int_to_fq!(k2_int))?;
    let k2_sign_var = circuit.create_boolean_variable(is_k2_positive)?;

    let t_var = circuit.create_variable(int_to_fq!(t_int))?;

    let tmp_var = circuit.create_variable(int_to_fq!(tmp_int))?;

    let tmp2_var = circuit.create_variable(int_to_fq!(tmp2_int))?;

    // ============================================
    // step 3. range proofs
    // ============================================
    //  (a) k1 < 2^128
    //  (b) k2 < 2^128
    circuit.enforce_in_range(k1_var, 128)?;
    circuit.enforce_in_range(k2_var, 128)?;

    //  (c) tmp1 = 0        <- implied by tmp = 2^128 * tmp2
    //  (d) tmp2 < 2^128
    //  (e) tmp = tmp1 + 2^128 tmp2
    circuit.mul_constant_gate(tmp2_var, two_to_128, tmp_var)?;
    circuit.enforce_in_range(tmp2_var, 128)?;

    // ============================================
    // step 4. equality proofs
    // ============================================
    //  (f) tmp + t * k2_sign * r1 + k1 =  lambda_1 * k2_sign * k2 + s
    //  (note that we cannot do subtraction because subtraction is over Fq)
    let k2_is_pos_sat = {
        //  (f.1) if k2_sign = 1, then, we prove over Z
        //      tmp + t * r1 + k1 =  lambda_1 * k2 + s
        let left_wire = [tmp_var, t_var, k1_var, circuit.zero()];
        let left_coeff = [F::one(), r1, F::one(), F::zero()];
        let left_var = circuit.lc(&left_wire, &left_coeff)?;

        let right_wire = [k2_var, *s_var, circuit.zero(), circuit.zero()];
        let right_coeff = [lambda_1, F::one(), F::zero(), F::zero()];
        let right_var = circuit.lc(&right_wire, &right_coeff)?;

        circuit.is_equal(left_var, right_var)?
    };

    let k2_is_neg_sat = {
        //  (f.2) if k2_sign = -1, then, we prove over Z
        //    lambda_1 * k2 +  tmp + k1 =   s  + t * r1
        let left_wire = [k2_var, tmp_var, k1_var, circuit.zero()];
        let left_coeff = [lambda_1, F::one(), F::one(), F::zero()];
        let left_var = circuit.lc(&left_wire, &left_coeff)?;

        let right_wire = [*s_var, t_var, circuit.zero(), circuit.zero()];
        let right_coeff = [F::one(), r1, F::zero(), F::zero()];
        let right_var = circuit.lc(&right_wire, &right_coeff)?;
        circuit.is_equal(left_var, right_var)?
    };

    //  (f.3) either f.1 or f.2 is satisfied
    let sat =
        circuit.conditional_select(k2_sign_var, k2_is_neg_sat.into(), k2_is_pos_sat.into())?;
    circuit.enforce_true(sat)?;

    //  (g) tmp2 + lambda_2 * k2_sign * k2 + s2  = t * t_sign * r2

    let k2_is_pos_sat = {
        //  (g.1) if k2_sign = 1 then
        //      tmp2 + lambda_2 * k_2_var = t * r2
        let left_wire = [tmp2_var, k2_var, circuit.zero(), circuit.zero()];
        let left_coeff = [F::one(), lambda_2, F::zero(), F::zero()];
        let left_var = circuit.lc(&left_wire, &left_coeff)?;

        let right_var = circuit.mul_constant(t_var, &r2)?;

        circuit.is_equal(left_var, right_var)?
    };

    let k2_is_neg_sat = {
        //  (g.2) if k2_sign = -1 then
        //      tmp2  + t * r2 = lambda_2 * k_2_var
        let left_wire = [tmp2_var, t_var, circuit.zero(), circuit.zero()];
        let left_coeff = [F::one(), r2, F::zero(), F::zero()];
        let left_var = circuit.lc(&left_wire, &left_coeff)?;

        let right_var = circuit.mul_constant(k2_var, &lambda_2)?;

        circuit.is_equal(left_var, right_var)?
    };

    //  (g.3) either g.1 or g.2 is satisfied
    let sat =
        circuit.conditional_select(k2_sign_var, k2_is_neg_sat.into(), k2_is_pos_sat.into())?;
    circuit.enforce_true(sat)?;

    // extract the output
    Ok((k1_var, k2_var, k2_sign_var))
}

#[cfg(test)]
/// return the highest non-zero bits of a bit string.
fn get_bits(a: &[bool]) -> u16 {
    let mut res = 256;
    for e in a.iter().rev() {
        if !e {
            res -= 1;
        } else {
            return res;
        }
    }
    res
}

#[cfg(test)]
mod tests {
    use super::*;
    use ark_ec::{
        twisted_edwards::{Affine, TECurveConfig as Config},
        CurveConfig,
    };
    use ark_ed_on_bls12_381_bandersnatch::{EdwardsAffine, EdwardsConfig, Fq, Fr};
    use ark_ff::{BigInteger, MontFp, One, UniformRand};
    use jf_utils::{fr_to_fq, test_rng};

    #[test]
    fn test_glv() -> Result<(), CircuitError> {
        test_glv_helper::<Fq, EdwardsConfig>()
    }

    fn test_glv_helper<F, P>() -> Result<(), CircuitError>
    where
        F: PrimeField,
        P: Config<BaseField = F>,
    {
        let mut rng = jf_utils::test_rng();

        for _ in 0..100 {
            {
                let mut base = Affine::<P>::rand(&mut rng);
                let s = P::ScalarField::rand(&mut rng);
                let mut circuit: PlonkCircuit<F> = PlonkCircuit::new_turbo_plonk();

                let s_var = circuit.create_variable(fr_to_fq::<F, P>(&s))?;
                let base_var = circuit.create_point_variable(TEPoint::from(base))?;
                base = (base * s).into();
                let result = circuit.variable_base_scalar_mul::<P>(s_var, &base_var)?;
                assert_eq!(TEPoint::from(base), circuit.point_witness(&result)?);

                // ark_std::println!("Turbo Plonk: {} constraints", circuit.num_gates());
                assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
            }
            {
                let mut base = Affine::<P>::rand(&mut rng);
                let s = P::ScalarField::rand(&mut rng);
                let mut circuit: PlonkCircuit<F> = PlonkCircuit::new_ultra_plonk(16);

                let s_var = circuit.create_variable(fr_to_fq::<F, P>(&s))?;
                let base_var = circuit.create_point_variable(TEPoint::from(base))?;
                base = (base * s).into();
                let result = circuit.variable_base_scalar_mul::<P>(s_var, &base_var)?;
                assert_eq!(TEPoint::from(base), circuit.point_witness(&result)?);

                // ark_std::println!("Ultra Plonk: {} constraints", circuit.num_gates());
                assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
            }

            {
                let mut base = Affine::<P>::rand(&mut rng);
                let s = P::ScalarField::rand(&mut rng);
                let mut circuit: PlonkCircuit<F> = PlonkCircuit::new_turbo_plonk();

                let s_var = circuit.create_variable(fr_to_fq::<F, P>(&s))?;
                let base_var = circuit.create_point_variable(TEPoint::from(base))?;
                base = (base * s).into();
                let result = circuit.glv_mul::<P>(s_var, &base_var)?;
                assert_eq!(TEPoint::from(base), circuit.point_witness(&result)?);

                // ark_std::println!("Turbo Plonk GLV: {} constraints", circuit.num_gates());
                assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
            }

            {
                let mut base = Affine::<P>::rand(&mut rng);
                let s = P::ScalarField::rand(&mut rng);
                let mut circuit: PlonkCircuit<F> = PlonkCircuit::new_ultra_plonk(16);

                let s_var = circuit.create_variable(fr_to_fq::<F, P>(&s))?;
                let base_var = circuit.create_point_variable(TEPoint::from(base))?;
                base = (base * s).into();
                let result = circuit.glv_mul::<P>(s_var, &base_var)?;
                assert_eq!(TEPoint::from(base), circuit.point_witness(&result)?);

                // ark_std::println!("Ultra Plonk GLV: {} constraints", circuit.num_gates());
                assert!(circuit.check_circuit_satisfiability(&[]).is_ok());
            }
        }
        Ok(())
    }

    #[test]
    fn test_endomorphism() {
        let base_point = EdwardsAffine::new_unchecked(
            MontFp!(
                "29627151942733444043031429156003786749302466371339015363120350521834195802525"
            ),
            MontFp!(
                "27488387519748396681411951718153463804682561779047093991696427532072116857978"
            ),
        );
        let endo_point = EdwardsAffine::new_unchecked(
            MontFp!("3995099504672814451457646880854530097687530507181962222512229786736061793535"),
            MontFp!(
                "33370049900732270411777328808452912493896532385897059012214433666611661340894"
            ),
        );
        let base_point: TEPoint<Fq> = base_point.into();
        let endo_point: TEPoint<Fq> = endo_point.into();

        let t = endomorphism::<_, EdwardsConfig>(&base_point);
        assert_eq!(t, endo_point);

        let mut circuit: PlonkCircuit<Fq> = PlonkCircuit::new_turbo_plonk();
        let point_var = circuit.create_point_variable(base_point).unwrap();
        let endo_var = endomorphism_circuit::<_, EdwardsConfig>(&mut circuit, &point_var).unwrap();
        let endo_point_rec = circuit.point_witness(&endo_var).unwrap();
        assert_eq!(endo_point_rec, endo_point);
    }

    #[test]
    fn test_decomposition() {
        let mut rng = test_rng();
        let lambda: Fr = Fr::from_le_bytes_mod_order(LAMBDA.as_ref());

        for _ in 0..100 {
            let scalar = Fr::rand(&mut rng);
            let (k1, k2, is_k2_pos) = scalar_decomposition(&scalar);
            assert!(get_bits(&k1.into_bigint().to_bits_le()) <= 128);
            assert!(get_bits(&k2.into_bigint().to_bits_le()) <= 128);
            let k2 = if is_k2_pos { k2 } else { -k2 };

            assert_eq!(k1 - k2 * lambda, scalar,);

            let mut circuit: PlonkCircuit<Fq> = PlonkCircuit::new_ultra_plonk(16);
            let scalar_var = circuit.create_variable(field_switching(&scalar)).unwrap();
            let (k1_var, k2_var, k2_sign_var) = scalar_decomposition_gate::<
                <EdwardsConfig as CurveConfig>::BaseField,
                <EdwardsConfig as CurveConfig>::ScalarField,
            >(&mut circuit, &scalar_var)
            .unwrap();

            let k1_rec = circuit.witness(k1_var).unwrap();
            assert_eq!(field_switching::<_, Fq>(&k1), k1_rec);

            let k2_rec = circuit.witness(k2_var).unwrap();
            let k2_sign = circuit.witness(k2_sign_var.into()).unwrap();
            let k2_with_sign_rec = if k2_sign == Fq::one() {
                field_switching::<_, Fr>(&k2_rec)
            } else {
                -field_switching::<_, Fr>(&k2_rec)
            };

            assert_eq!(k2, k2_with_sign_rec);
        }
    }
}