jf_relation/gadgets/ecc/
msm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.

// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.

//! This module implements multi-scalar-multiplication circuits.

use super::{PointVariable, TEPoint};
use crate::{Circuit, CircuitError, PlonkCircuit, Variable};
use ark_ec::{
    twisted_edwards::{Projective, TECurveConfig as Config},
    CurveConfig,
};
use ark_ff::{BigInteger, PrimeField};
use ark_std::{format, vec, vec::Vec};
use jf_utils::fq_to_fr;

/// Compute the multi-scalar-multiplications in circuit.
pub trait MultiScalarMultiplicationCircuit<F, P>
where
    F: PrimeField,
    P: Config<BaseField = F>,
{
    /// Compute the multi-scalar-multiplications.
    /// Use pippenger when the circuit supports lookup;
    /// Use naive method otherwise.
    /// Return error if the number bases does not match the number of scalars.
    fn msm(
        &mut self,
        bases: &[PointVariable],
        scalars: &[Variable],
    ) -> Result<PointVariable, CircuitError>;

    /// Compute the multi-scalar-multiplications where each scalar has at most
    /// `scalar_bit_length` bits.
    fn msm_with_var_scalar_length(
        &mut self,
        bases: &[PointVariable],
        scalars: &[Variable],
        scalar_bit_length: usize,
    ) -> Result<PointVariable, CircuitError>;
}

impl<F, P> MultiScalarMultiplicationCircuit<F, P> for PlonkCircuit<F>
where
    F: PrimeField,
    P: Config<BaseField = F>,
{
    fn msm(
        &mut self,
        bases: &[PointVariable],
        scalars: &[Variable],
    ) -> Result<PointVariable, CircuitError> {
        let scalar_bit_length = <P as CurveConfig>::ScalarField::MODULUS_BIT_SIZE as usize;
        MultiScalarMultiplicationCircuit::<F, P>::msm_with_var_scalar_length(
            self,
            bases,
            scalars,
            scalar_bit_length,
        )
    }

    fn msm_with_var_scalar_length(
        &mut self,
        bases: &[PointVariable],
        scalars: &[Variable],
        scalar_bit_length: usize,
    ) -> Result<PointVariable, CircuitError> {
        if bases.len() != scalars.len() {
            return Err(CircuitError::ParameterError(format!(
                "bases length ({}) does not match scalar length ({})",
                bases.len(),
                scalars.len()
            )));
        }

        if self.support_lookup() {
            msm_pippenger::<F, P>(self, bases, scalars, scalar_bit_length)
        } else {
            msm_naive::<F, P>(self, bases, scalars, scalar_bit_length)
        }
    }
}

// A naive way to implement msm by computing them individually.
// Used for double checking the correctness; also as a fall-back solution
// to Pippenger.
//
// Some typical result on BW6-761 curve is shown below (i.e. the circuit
// simulates BLS12-377 curve operations). More results are available in the test
// function.
//
// number of basis: 1
// #variables: 1867
// #constraints: 1865
//
// number of basis: 2
// #variables: 3734
// #constraints: 3730
//
// number of basis: 4
// #variables: 7468
// #constraints: 7460
//
// number of basis: 8
// #variables: 14936
// #constraints: 14920
//
// number of basis: 16
// #variables: 29872
// #constraints: 29840
//
// number of basis: 32
// #variables: 59744
// #constraints: 59680
//
// number of basis: 64
// #variables: 119488
// #constraints: 119360
//
// number of basis: 128
// #variables: 238976
// #constraints: 238720
fn msm_naive<F, P>(
    circuit: &mut PlonkCircuit<F>,
    bases: &[PointVariable],
    scalars: &[Variable],
    scalar_bit_length: usize,
) -> Result<PointVariable, CircuitError>
where
    F: PrimeField,
    P: Config<BaseField = F>,
{
    circuit.check_vars_bound(scalars)?;
    for base in bases.iter() {
        circuit.check_point_var_bound(base)?;
    }

    let scalar_0_bits_le = circuit.unpack(scalars[0], scalar_bit_length)?;
    let mut res = circuit.variable_base_binary_scalar_mul::<P>(&scalar_0_bits_le, &bases[0])?;

    for (base, scalar) in bases.iter().zip(scalars.iter()).skip(1) {
        let scalar_bits_le = circuit.unpack(*scalar, scalar_bit_length)?;
        let tmp = circuit.variable_base_binary_scalar_mul::<P>(&scalar_bits_le, base)?;
        res = circuit.ecc_add::<P>(&res, &tmp)?;
    }

    Ok(res)
}

// A variant of Pippenger MSM.
//
// Some typical result on BW6-761 curve is shown below (i.e. the circuit
// simulates BLS12-377 curve operations). More results are available in the test
// function.
//
// number of basis: 1
// #variables: 887
// #constraints: 783
//
// number of basis: 2
// #variables: 1272
// #constraints: 1064
//
// number of basis: 4
// #variables: 2042
// #constraints: 1626
//
// number of basis: 8
// #variables: 3582
// #constraints: 2750
//
// number of basis: 16
// #variables: 6662
// #constraints: 4998
//
// number of basis: 32
// #variables: 12822
// #constraints: 9494
//
// number of basis: 64
// #variables: 25142
// #constraints: 18486
//
// number of basis: 128
// #variables: 49782
// #constraints: 36470
fn msm_pippenger<F, P>(
    circuit: &mut PlonkCircuit<F>,
    bases: &[PointVariable],
    scalars: &[Variable],
    scalar_bit_length: usize,
) -> Result<PointVariable, CircuitError>
where
    F: PrimeField,
    P: Config<BaseField = F>,
{
    // ================================================
    // check inputs
    // ================================================
    for (&scalar, base) in scalars.iter().zip(bases.iter()) {
        circuit.check_var_bound(scalar)?;
        circuit.check_point_var_bound(base)?;
    }

    // ================================================
    // set up parameters
    // ================================================
    let c = if scalar_bit_length < 32 {
        3
    } else {
        ln_without_floats(scalar_bit_length)
    };

    // ================================================
    // compute lookup tables and window sums
    // ================================================
    let point_zero_var = circuit.neutral_point_variable();
    // Each window is of size `c`.
    // We divide up the bits 0..scalar_bit_length into windows of size `c`, and
    // in parallel process each such window.
    let mut window_sums = Vec::new();
    for (base_var, &scalar_var) in bases.iter().zip(scalars.iter()) {
        // decompose scalar into c-bit scalars
        let decomposed_scalar_vars =
            decompose_scalar_var(circuit, scalar_var, c, scalar_bit_length)?;

        // create point table [0 * base, 1 * base, ..., (2^c-1) * base]
        let mut table_point_vars = vec![point_zero_var, *base_var];
        for _ in 0..((1 << c) - 2) {
            let point_var = circuit.ecc_add::<P>(base_var, table_point_vars.last().unwrap())?;
            table_point_vars.push(point_var);
        }

        // create lookup point variables
        let mut lookup_point_vars = Vec::new();
        for &scalar_var in decomposed_scalar_vars.iter() {
            let lookup_point = compute_scalar_mul_value::<F, P>(circuit, scalar_var, base_var)?;
            let lookup_point_var = circuit.create_point_variable(lookup_point)?;
            lookup_point_vars.push(lookup_point_var);
        }

        create_point_lookup_gates(
            circuit,
            &table_point_vars,
            &decomposed_scalar_vars,
            &lookup_point_vars,
        )?;

        // update window sums
        if window_sums.is_empty() {
            window_sums = lookup_point_vars;
        } else {
            for (window_sum_mut, lookup_point_var) in
                window_sums.iter_mut().zip(lookup_point_vars.iter())
            {
                *window_sum_mut = circuit.ecc_add::<P>(window_sum_mut, lookup_point_var)?;
            }
        }
    }

    // ================================================
    // performing additions
    // ================================================
    // We store the sum for the lowest window.
    let lowest = *window_sums.first().unwrap();

    // We're traversing windows from high to low.
    let b = &window_sums[1..]
        .iter()
        .rev()
        .fold(point_zero_var, |mut total, sum_i| {
            // total += sum_i
            total = circuit.ecc_add::<P>(&total, sum_i).unwrap();
            for _ in 0..c {
                // double
                total = circuit.ecc_add::<P>(&total, &total).unwrap();
            }
            total
        });
    circuit.ecc_add::<P>(&lowest, b)
}

#[inline]
fn create_point_lookup_gates<F>(
    circuit: &mut PlonkCircuit<F>,
    table_point_vars: &[PointVariable],
    lookup_scalar_vars: &[Variable],
    lookup_point_vars: &[PointVariable],
) -> Result<(), CircuitError>
where
    F: PrimeField,
{
    let table_vars: Vec<(Variable, Variable)> = table_point_vars
        .iter()
        .map(|p| (p.get_x(), p.get_y()))
        .collect();
    let lookup_vars: Vec<(Variable, Variable, Variable)> = lookup_scalar_vars
        .iter()
        .zip(lookup_point_vars.iter())
        .map(|(&s, pt)| (s, pt.get_x(), pt.get_y()))
        .collect();
    circuit.create_table_and_lookup_variables(&lookup_vars, &table_vars)
}

#[inline]
/// Decompose a `scalar_bit_length`-bit scalar `s` into many c-bit scalar
/// variables `{s0, ..., s_m}` such that `s = \sum_{j=0..m} 2^{cj} * s_j`
fn decompose_scalar_var<F>(
    circuit: &mut PlonkCircuit<F>,
    scalar_var: Variable,
    c: usize,
    scalar_bit_length: usize,
) -> Result<Vec<Variable>, CircuitError>
where
    F: PrimeField,
{
    // create witness
    let m = (scalar_bit_length - 1) / c + 1;
    let mut scalar_val = circuit.witness(scalar_var)?.into_bigint();
    let decomposed_scalar_vars = (0..m)
        .map(|_| {
            // We mod the remaining bits by 2^{window size}, thus taking `c` bits.
            let scalar_u64 = scalar_val.as_ref()[0] % (1 << c);
            // We right-shift by c bits, thus getting rid of the
            // lower bits.
            scalar_val.divn(c as u32);
            circuit.create_variable(F::from(scalar_u64))
        })
        .collect::<Result<Vec<_>, _>>()?;

    // create circuit
    let range_size = F::from((1 << c) as u32);
    circuit.decomposition_gate(decomposed_scalar_vars.clone(), scalar_var, range_size)?;

    Ok(decomposed_scalar_vars)
}

#[inline]
/// Compute the value of scalar multiplication `witness(scalar_var) *
/// witness(base_var)`. This function does not add any constraints.
fn compute_scalar_mul_value<F, P>(
    circuit: &PlonkCircuit<F>,
    scalar_var: Variable,
    base_var: &PointVariable,
) -> Result<TEPoint<F>, CircuitError>
where
    F: PrimeField,
    P: Config<BaseField = F>,
{
    let curve_point: Projective<P> = circuit.point_witness(base_var)?.into();
    let scalar = fq_to_fr::<F, P>(&circuit.witness(scalar_var)?);
    let res = curve_point * scalar;
    Ok(res.into())
}

/// The result of this function is only approximately `ln(a)`
/// [`Explanation of usage`]
///
/// [`Explanation of usage`]: https://github.com/scipr-lab/zexe/issues/79#issue-556220473
fn ln_without_floats(a: usize) -> usize {
    // log2(a) * ln(2)
    (ark_std::log2(a) * 69 / 100) as usize
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::PlonkType;
    use ark_bls12_377::{g1::Config as Param377, Fq as Fq377};
    use ark_ec::{
        scalar_mul::variable_base::VariableBaseMSM,
        twisted_edwards::{Affine, TECurveConfig as Config},
    };
    use ark_ed_on_bls12_377::{EdwardsConfig as ParamEd377, Fq as FqEd377};
    use ark_ed_on_bls12_381::{EdwardsConfig as ParamEd381, Fq as FqEd381};
    use ark_ed_on_bn254::{EdwardsConfig as ParamEd254, Fq as FqEd254};
    use ark_ff::UniformRand;
    use jf_utils::fr_to_fq;

    const RANGE_BIT_LEN_FOR_TEST: usize = 8;

    #[test]
    fn test_variable_base_multi_scalar_mul() -> Result<(), CircuitError> {
        test_variable_base_multi_scalar_mul_helper::<FqEd254, ParamEd254>(PlonkType::TurboPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<FqEd254, ParamEd254>(PlonkType::UltraPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<FqEd377, ParamEd377>(PlonkType::TurboPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<FqEd377, ParamEd377>(PlonkType::UltraPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<FqEd381, ParamEd381>(PlonkType::TurboPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<FqEd381, ParamEd381>(PlonkType::UltraPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<Fq377, Param377>(PlonkType::TurboPlonk)?;
        test_variable_base_multi_scalar_mul_helper::<Fq377, Param377>(PlonkType::UltraPlonk)?;

        // // uncomment the following code to dump the circuit comparison to screen
        // assert!(false);

        Ok(())
    }

    fn test_variable_base_multi_scalar_mul_helper<F, P>(
        plonk_type: PlonkType,
    ) -> Result<(), CircuitError>
    where
        F: PrimeField,
        P: Config<BaseField = F>,
    {
        let mut rng = jf_utils::test_rng();

        for dim in [1, 2, 4, 8, 16, 32, 64, 128] {
            let mut circuit: PlonkCircuit<F> = match plonk_type {
                PlonkType::TurboPlonk => PlonkCircuit::new_turbo_plonk(),
                PlonkType::UltraPlonk => PlonkCircuit::new_ultra_plonk(RANGE_BIT_LEN_FOR_TEST),
            };

            // bases and scalars
            let bases: Vec<Affine<P>> = (0..dim).map(|_| Affine::<P>::rand(&mut rng)).collect();
            let scalars: Vec<P::ScalarField> =
                (0..dim).map(|_| P::ScalarField::rand(&mut rng)).collect();
            let scalar_reprs: Vec<<P::ScalarField as PrimeField>::BigInt> =
                scalars.iter().map(|x| x.into_bigint()).collect();
            let res = Projective::<P>::msm_bigint(&bases, &scalar_reprs);
            let res_point: TEPoint<F> = res.into();

            // corresponding wires
            let bases_point: Vec<TEPoint<F>> = bases.iter().map(|x| (*x).into()).collect();
            let bases_vars: Vec<PointVariable> = bases_point
                .iter()
                .map(|x| circuit.create_point_variable(*x))
                .collect::<Result<Vec<_>, _>>()?;
            let scalar_vars: Vec<Variable> = scalars
                .iter()
                .map(|x| circuit.create_variable(fr_to_fq::<F, P>(x)))
                .collect::<Result<Vec<_>, _>>()?;

            // compute circuit
            let res_var = MultiScalarMultiplicationCircuit::<F, P>::msm(
                &mut circuit,
                &bases_vars,
                &scalar_vars,
            )?;

            assert_eq!(circuit.point_witness(&res_var)?, res_point);

            // // uncomment the following code to dump the circuit comparison to screen
            // ark_std::println!("number of basis: {}", dim);
            // ark_std::println!("#variables: {}", circuit.num_vars(),);
            // ark_std::println!("#constraints: {}\n", circuit.num_gates(),);

            // wrong witness should fail
            *circuit.witness_mut(2) = F::rand(&mut rng);
            assert!(circuit.check_circuit_satisfiability(&[]).is_err());
            // un-matching basis & scalars
            assert!(MultiScalarMultiplicationCircuit::<F, P>::msm(
                &mut circuit,
                &bases_vars[0..dim - 1],
                &scalar_vars
            )
            .is_err());

            // Check variable out of bound error.
            let var_number = circuit.num_vars();
            assert!(MultiScalarMultiplicationCircuit::<F, P>::msm(
                &mut circuit,
                &[PointVariable(var_number, var_number)],
                &scalar_vars
            )
            .is_err());
            assert!(MultiScalarMultiplicationCircuit::<F, P>::msm(
                &mut circuit,
                &bases_vars,
                &[var_number]
            )
            .is_err());
        }
        Ok(())
    }
}